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ABSTRACT

The motion of low energy plasma in the outer magnetosphere

is considered. In particular, theoretical plasma models are set up

to describe the motion of plasma along a magnetic field line, as the

plasma and the "frozen-in" field follow the convection pattern in-

herent to the "open" model of the magnetosphere. The component of

the electric field parallel to the earth's magnetic field lines

plays a significant role in this investigation.

At interconnection of the interplanetary and earth field lines

on the day side of the earth, two dissimilar plasmas merge. The

electrons are considered to rapidly interdiffuse. Due to the small

thermal velocities of the low energy protons, however, the protons

must be considered in the light of the past history of the parallel

electric field.

Using model distribution functions the electron density is

determined at every point along the open field lines as a function

of the local electrostatic potential. A study of the proton motion

indicates that a minimum of electrostatic potential may occur near

the magnetopause. Therefore, electrons trapped between the po-

tential minimum and the magnetic mirror had to be included in the

analysis. Given the proton density at all points along an open field

line, the derived density - potential profiles are used to determine

the parallel electric field variation along the field line.

At reconnection on the night side, proton streams traveling

along magnetic field lines away from the earth collide at the
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equator. It is hypothesized that plasma shocks then form which

travel away from the equator, along magnetic flux tubes towards the

polar ionospheres as the closed field line formed by reconnection

moves towards the day side. The shocks are studied for the simple

case in which the ordered proton motion is completely randomized

by their passage.
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CHAPTERi

INTRODUCTION

i.i General Statement of the Problem

The problem to be considered is the motion of the essen-

tially neutral, low density, low energy plasma, consisting of

mainly electrons and protons,which exists in the outer reaches of

the earth's magnetic field. In this spatial regime, electric fields

are believed to exist which have components both parallel and perpen-

dicular to the magnetic field lines. Hence an analysis of the plasma

motion will also entail an analysis of the different types of electric

fields which are present.

This thesis is an attempt to develop plasma models which

describe a few aspects of the plasma environment at large geocentric

distances.

1.2 Origin and Importance of the Problem

During the past decade, satellites and rockets have probed

the outer reaches of the earth's geomagnetic environment° Scientif-

ic instruments carried by these vehicles have begun to furnish a

detailed mapping of the magnetic fields and high energy plasmas

existing in the neighborhood of the earth. Thus far, however,

because of experimental limitations, very few direct measurements

have been made of the very low energy (of the order of a few electron

volts), low density (a few particles per cubic centimeter) plasma

found in this spatial region. Hence, lacking experimental data,
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theoretical models are needed in order to determine the probable

spatial and temporal distribution of the low energy, low density

plasma.

Although considerable theoretical research has been done con-

cerning the effects, on a plasma, of electric field componentsper-

pendicular to the magnetic field direction, the parallel component

is usually neglected due to the assumption of a large (essentially

infinite) electrical conductivity parallel to the magnetic lines of

force° In the case of a mediumor high density plasma this assump-

tion requires a vanishingly small parallel electric field because

the current is directly proportional to the electric field and in

the samedirection.

In a low density plasma (that is, a plasma for which the mean

free path is muchgreater than the characteristic length of the

spatial region considered) the current density and electric field in

the direction of the magnetic field are not simply related and the

concept of conductivity has no meaning (Alfv_n and Fglthammer, 1963).

Therefore electric field componentsparallel to the magnetic field

lines mayoccur in the outer reaches of the earth's magnetic field

where the plasma is of low density. This study will explore the

effects of these "parallel E fields" on the plasma motion.

1.3 The Earth's Magnetic Field Configuration

The earth, with its dipole-like magnetic field, is immersed

in a stream of neutral plasma emitted from the sun. Chapman and

Ferraro (1931, 1932, 1933) approximated this situation by a perfectly

conducting, field-free sheet approaching a magnetic dipole. Induced
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currents in the conducting sheet modify the dipole field as is shown

in Figure i. The model of Chapmanand Ferraro confines the earth's

magnetic field to the earth side of the sheet, forming a geomagnetic

cavity. These investigators had assumedthat the interplanetary

plasma flow, and hence the geomagnetic cavity, existed only during

magnetic storms.

Later studies by Biermann (1951) on the tails of comets, and

theoretical studies by Parker (1958, 1960) on the hydrodynamic ex-

pansion of the solar corona indicated that the sun emitted a contin-

uous stream of charged particles. This was confirmed experimentally

by the satellites Lunik 2 and Lunik 3 (Gringauz et al., 1960) and

by Explorer I0 (Bonetti et al., 1963). The existence of a continual

"solar wind" implied the continual existence of a geomagnetic cavity,

which is indeed the case as shownby direct measurementsof the

geomagnetic field by the satellites Explorers i0, 12, 14, 18, and 21.
/

With no interplanetary magnetic field, the earth's field is

contained completely within the magnetospheric boundary, where the

term magnetosphere refers to that part of the earth's environs in

which the motion of ionization is dominated by the geomagnetic field.

If the solar plasma is warm, the tail of the cavity will close at a

great distance from the earth on the night side due to the thermal

pressure overcoming the magnetic pressure. The "closed" model of

the magnetosphere refers to a field configuration in which the field

lines form a closed system and connect every point in one hemisphere

to every point in the opposite hemisphere. This model is shown in

Figure 2.
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Using Pioneer 5 data, Coleman et al. (1960) detected a small

interplanetary field of the order of a few gammas. Thereupon, Dungey

(1961) developed the "open" model of the magnetosphere in which field

lines originating in one hemisphere may not terminate in the opposite

hemisphere, but instead connect to the interplanetary field (see

Figure 3). This configuration results only if the interplanetary

field has a southward component. One of the many interesting facets

of this model is that the open field lines allow a direct path by

which interplanetary charged particles may enter into the magneto-

sphere.

It is hard to escape the conclusion that the geomagnetic field

lines are "frozen" to the plasma in the magnetosphere (Levy et al.,

1963; Dungey, 1966). The plasma motion and the corresponding field

line motion in the open model are indicated by the arrows in Figure

3. A more detailed description of the motion is seen in Figure 4

where a time sequence of the motion of an individual field line is

shown (the motion takes place in the direction of increasing label

numbers)_ Since the situation is assumed to be steady, Figure 4

can also be considered as the total field and flow morphology at a

given time. Dungey's model allows the solar field lines to merge

with the earth's field on the day side of the earth. The resulting

open field lines are then dragged by the solar wind through the tail

to a current sheet and are reconnected into the night side of the

magnetosphere. The resulting closed field line (labeled 8 in Figure

4) then drifts around the earth to the day side and towards the
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magnetopause (i.e_, the boundary of the magnetosphere) where the

cycle begins again.

Although there is still some question, the open model of the

magnetosphere appears to be widely supported today. This model

agrees qualitatively with the DS current system (Dungey, 1961) and

appears capable of explaining some aspects of the auroral morphology

(Speiser, 1964; 1967). Experimentally, it has been supported by the

positive correlation found between geomagnetic disturbances and the

southward component of the interplanetary field (Fairfield and

Cahill, 1966; Wilcox et alo, 1967; Schatten and Wilcox, 1967).

Also, measurements of the magnetic field component normal to the

magnetospheric boundary current layer (the magnetopause) by Sonnerup

and Cahill (1967) provide evidence that field lines of the earth

connect to interplanetary field lines at least during the main phase

of a magnetic storm. In the face of this evidence, the open model

will be assumed in the work to follow.

In addition, since the solar wind velocity (300 to 600km/s)

is greater than the Alfv_n velocity, a collisionless magneto-

hydrodynamic bow shock forms in a manner somewhat analogous to the

shock wave formed by supersonic flow past a blunt body in gas dy-

namics. This shock wave was detected by Explorers 12 and 18 at

about 14 to 16 earth radii near the subsolar point on the day side

of the earth; whereas, the subsolar point of the magnetopause is on

the average at only i0 earth radii. The region between the shock

and the magnetopause is called the magnetosheath and is character-

ized by a well thermalized plasma and a magnetic field which is
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somewhat turbulent compared to the magnetospheric field. For a

southward interplanetary field, the field topology with regards to

the shock is as shown in Figure 5,

1.4 Previous Studies of Magnetospheric Ambient Plasma

Lightning discharges produce audio frequency electromagnetic

disturbances which propagate through the magnetosphere in the "whis-

tler" mode along magnetic shells with enhanced ionization. From the

dispersion characteristics of these waves which are measured by

ground based stations, it is possible to obtain electron densities

in the equatorial plane.

Studying whistlers, Carpenter (1963) discovered a very abrupt

decrease of electron density with increasing distance from the earth

at an equatorial geocentric distance of approximately 4 earth radii.

This region of rapid decrease is known as the "plasmapause" or

"whistler knee." A sharp decrease has also been detected by low

energy plasma probes on board space vehicles (Gringauz, 1963; Taylor

et al., 1965; Whipple and Troy, 1965). The knee is essentially field

aligned and separates, according to Carpenter's (1966) more recent

measurements, an inner region (plasmasphere) of density i00 electrons/

cc from the outer region (trough) where the density may be as low as

I electron/cc (see Figure 6a). Carpenter's results also indicate

that the knee possesses the dawn-dusk asymmetry shown in Figure 6b.

The plasmasphere corresponds to a plasma region in which the

constituent ions and electrons are in diffusive equilibrium; whereas,

the trough consists of a collisionless plasma which is not in
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equilibrium (Angerami and Carpenter, 1966). The distinct change in

plasma behavior across the plasmapause appears to correspond to a

change in the nature of the magnetic field circulation process as

will be seen in the next paragraph.

The convection model described previously did not include the

tendency of the magnetospheric plasma to rotate with the earth. If

the plasma motion due to the earth's rotation is superposed on the

convection motion previously assumed, the magnetospheric lines of

force are separated into two distinct groups: those that open to

interplanetary space during the convective motion and those that

always remain closed. On field lines of the former group, the plasma

density will be less than the value expected on the basis of equilib-

rium theory because the plasma can escape to interplanetary space

when these field lines are open, whereas the rate of replenishment

from the ionosphere is low. On field lines of the latter group,

plasma escape is always prevented by closed field lines so that

diffusive equilibrium will prevail. Nishida (1966) showed that the

plasmapause appears to correspond to the boundary surface between

these two groups of field lines. More recent computations by Brice

(1967) also lend support to this explanation of the plasmapause.

1.5 Parallel Electric Fields in the Magnetosphere

In the outer magnetosphere, the mean free paths of the ions

and electrons are greater than the size of the magnetosphere

(approximately i0 earth radii). The Debye length, on the other hand,

is only of the order of meters° Hence, this region can be considered
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as a low density plasma in which the principle of quasineutrality is

valid; that is, the ions and electrons have the samenumerical density

everywhere except in thin Debye sheaths.

Alfv_n and Fglthammer (1963) showedthat the concept of

electrical conductivity has no meaning in such a plasma since the

electric field and current density are generally not proportional.

In fact, these authors studied a low density plasma of protons and

electrons in a magnetic mirror configuration, when each kind of

particle has a well defined velocity commonto all particles of that

kind. Their study proved that the electric field parallel to the

magnetic field lines vanishes locally only if the ions and electrons

have the samepitch angle. This can be demonstrated by an example.

Consider a magnetic bottle in which is contained a collisionless

plasma. Let all of the protons in the bottle have 0 degrees pitch

angle and all of the electrons a pitch angle less than 90 degrees

in the equatorial plane. The 0 degree particles cannot be reflected

by the magnetic mirror at all, so they must be contained by an

electric potential well in order to ensure quasineutrality. Thus,

an electric field parallel to the magnetic field must arise which

will make the mirror point of the electrons the sameas that of the

protons.

Alfv_n's study was for a very simple plasma distribution.

However, Persson (1963) showedthat, in general, the parallel

electric field vanishes in a steady state only if the velocity-

integrated pitch angle distributions of the electrons and positive

ions are identical. If they are not, then there is an electric
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field determined from the velocity distributions and the principle

of quasineutrality. In a low density plasma these principles re-

place Poisson's equation (Block, 1966).

In the outer magnetosphere these parallel electric fields

must be taken into account when considering the motion of the low

energy charged particles. In determining the parallel field the

important quantity is plasma density. Hencethe low energy particles

are likely to be more important than the high energy particles be-

cause the former are more sensitive to the field and also contribute

more to the particle density. In fact, any charge density due to

high energy particles can probably be nullified by low energy par-

ticles with only a slight change in the parallel electric field

(Dungey, 1966).

1.6 Specific Statement of the Problem

The distribution of low energy particles in the outer magneto-

sphere and their motion are to be considered in this thesis. In

particular, the plasma motion along a field line, as it follows the

circulation described in Section 1.3, will be considered for a time

period after the field line has just passed through the day (or

night) neutral point where two dissimilar plasmas meet. Using

approximate plasma models, the results of this study will describe

a few aspects of the outer magnetosphere which might be expected

of the open model of the magnetic field configuration.

In principle, there exists an exact model of plasma flow

along a field line which is valid for the entire circulation cycle.
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A truly rigorous model would have a characteristic period equal to

the period of the circulation (approximately one day). However, due

to the manydifferent plasma processes which may occur, the com-

plexity of the mathematical analysis required, and the lack of

direct measurementsof this medium, it is not feasible at the

present time to devise an accurate model with this cyclic character.

Wemust then be content with someapproximate models described

below.



CHAPTERII

MOTIONOFPLASMAALONGOPENFIELD LINES

2.1 General Description of the Model

At reconnection on the day side of the earth, magnetospheric

plasma of ionospheric origin meets a higher temperature plasma of

magnetosheath origin. These dissimilar plasmas will interdiffuse

along the open field line formed at reconnection, as the plasma

and the magnetic field lines follow the convection pattern described

in the introduction. This situation is depicted qualitatively in

Figure 7 which shows a flux tube and its enclosed proton plasma at

various stages in the circulation cycle. The protons of ionospheric

origin are characterized by the temperature T and those of magneto-
e

sheath origin by T (the subscripts e and s are indicative of the
S

earth and sun respectively)° The shaded region in the figure

corresponds to the interdiffusion region, which expands along the

field lines as the night side is approached.

An electron of energy 0.3 ev (this energy is typical of the

thermal plasma under consideration) travels i0 earth radii (Re) in

one minute - a time much shorter than the characteristic time of

the field line circulation (approximately one day). Hence, the

electrons will interdiffuse very rapidly and can be considered by

neglecting the variation of the parallel electric field with time.

The protons, on the other hand, due to their lower velocities must

be considered in the light of the past history of the electric

field. The parallel E field is assumed to be that static field

-17-



-18-

L "4>

FIGURE 7. CIRCULATING FLUX TUBES AND ION
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which makes the electrons have the same density as the protons at

every point along the circulating field line considered.

2.2 Basic Assumptions of the Gross Motion

The guiding center of a nonrelativistic charged particle

of mass m and charge e, moving under the influence of external

electric and magnetic fields of magnitude E and B respectively,

obeys the following equations of motion (Alfv_n and F_ithammer,

1963) :

B du

u = - -- × (e_ - _ grad B - m _ )
eB 2 dt

and (2-1)

d

d-_ (mU)ll = (eE_ - V grad B)II.

In equations 2-1 the subscripts ]_land _ denote the components of a

vector parallel and perpendicular to the magnetic field. The velocity u
l

(the perpendicular component of the guiding center velocity) is to be

distinguished from the spiralling velocity v . Also, the magnetic

moment _ = _mv_/B is an invariant of the motion for the plasmas and

field configurations under consideration. It is to be noted that

the MKS system of units is used throughout this thesis.

When the centrifugal force due to motion along a curved field

line is explicitly determined and substituted for the inertial term

(the last term in the first of equations 2-1), and when curl B

vanishes, the equation of mo£ion for the perpendicular component of

the guiding center velocity becomes (see Alfv_n and F_ithammer, 1963):
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u = - -- × - _ (i + 2 grad B •
_ eB 2 v

/ll

(2-2)

From equation 2-2 the ratio of the magnetic drift velocity to the

electric field drift velocity is of the order of magnitude V/EL where

V is the volt equivalent of the particle's energy and L a character-

istic length. For the low energy, low density particles in the outer

magnetosphere, this quantity is much less than one. Therefore, the

magnetic drift term can be ignored and the equations of motion can be

written as

B
%

=---xE or E
uI B2 _ ,T. + ux_ _B = 0

(2-3)

and

d (eE grad B) Ii (2-4)(mUll)= - _

Having determined the equations of motion applicable to low

energy magnetospheric ions, it is now possible to determine the con-

ditions under which these particles can be considered as '_frozen to"

the magnetic lines of force. Using equation 2-3 the rate of change

of magnetic flux F through a contour moving with the guiding centers

of the plasma can be shown to be (Fglthammer, 1964)

dtd--F-F= -ff curl Ell • _dS (2-5)

where S is the area of the contour. Thus if curl Ell vanishes, the

particles behave as though attached to the magnetic lines of force.

This condition is valid for the models to be considered since the
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parallel E field will be assumedto be a conservative field. Detail-

ed measurementsof the magnetospheric E and B fields are required in

order to determine how valid this assumption is.

Assuming that the low energy plasma is frozen to the magnetic

field, the evolution of plasma motion along a line of force can be

considered as it follows the circulation pattern described previous-

ly (Dungey, 1966). The parallel componentof the ion velocity will

develop according to equation 2-4 and the perpendicular component

is determined from equation 2-3°

2.3 Magnetic Field Model

As an open field line is swept towards the night side of the

earth by the solar wind, its spatial configuration changes, as is

apparent in Figure 4. Since the plasma motion along an open field

line is to be considered for only a short time period after re-

connection on the day side, this field variation can be ignored°

That is, the variation of B along the open field lines is assumed

to be a spatial and temporal invariant.

In the magnetosheath, Fairfield (1967) has indicated that the

magnetic field may be more ordered than the interplanetary field.

The magnetosheath field is of the order of i0 to 20 gammas° On the

earth side of the magnetopause, the field is essentially dipolar.

Hence, the magnetic field along a field line extending from the

earth to the day side reconnection point should be dipolar and should

approach an essentially constant value in the magnetosheath. Later

a dipole field will be used for calculations, but at present, it is

more convenient if the magnetic field is chosen to be of the form
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B = a e B(S-1) + b

where a, b and B are constants and S is the distance along the field

line from the earth in earth radii (Re). The constants are deter-

mined from the following conditions:

i. at S = 1 Re, B = 6 x 104 gammas

2. at S = 2 Re, B = 103 gammas

3. as S ÷ =, B + i0 gammas.

The value of B chosen at iRe is approximately the auroral zone value,

that at 2Re is an approximate dipole value at high latitudes. It

must be emphasized that although the form chosen for the field is

not very accurate it is simple enough in form for convenient numerical

calculations and it becomesessentially constant at great distances

corresponding to the magnetosheath.

magnetic field formula is:

B = 6 x 104 e -4.1 (S-I)

Evaluating the constants, the

+ i0 (gammas). (2.6)

2°4 Ionospheric Electrons

By ionospheric electrons is meant those electrons which have

traveled upwards along the open flux tube under consideration from

the base level of the tube in the ionosphere where they were produced

by photoionization processes. Below the base level (i.e. in the

upper ionosphere) the distribution of electrons is controlled by

collisions and will be described by the Maxwell-Boltzmann distribu-

tion function. Ignoring collisions above the base level (i.e. in

the magnetosphere) and considering only those electrons whose



-23-

trajectories pass through the base level (i.e. those in the loss

cone), Liouville's theorem is appropriate and the ionospheric elec-

trons are all characterized by the samedistribution function°

(Particles trapped between two magnetic mirrors or a magnetic and

electric mirror are not considered--for such particles, collisions

are probably important (Dungey, 1966) and the Fokker-Planck equation

must be used. In the next chapter trapped electrons will be con-

sidered in a simple situation°)

Let the electron's electric potential energy in the conser-

vative parallel field Eli be denoted by _, where _ is a function of

position on the field line. The Maxwellian distribution function

for the electrons in this conservative force field is (Chapmanand

2
3/2 -my /2kT -_/kTm

f = no (2 _ k T ) e e (2-7)

where _ is the potential energy with respect to the potential energy

at the ionospheric base level and n is the base level electron
o

density.

Since only those electrons which are within the loss cone of

the base are being considered, at any given point along the field

line the electron's parallel and perpendicular velocities must

satisfy the inequality:

B
2 o 2 21

vii - ( B - I) v + > 0 (2-8)I m -

where B is the base level magnetic field and B is the field at the
o

point under consideration° This relation is derived by assuming an

Cowling, 1964):
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2
invariant magnetic moment, conservation of energy, and Vll _ 0. It

defines mathematically the loss cone hyperboloid (Persson, 1965) at

every point on the field line. The loss cones for positive and

negative potential energies are shown in Figure 8.

In order to determine the electron density at a point, given

the potential, the distribution function is integrated over the

allowed velocity range. For a positive potential energy (i.e. an
B
o 1electron in a region of negative potential) let _ - B

m and _ = 2_ . Then the density of the electrons in theY = 2k---_' m

loss cone is given by:
2 ½

(Vll + _

3/2 _ ) 112 v2+_)
n = n (+)2_ f _ _ e -y(v + v dv dVll

o -_ o _

where the upper limit for v is obtained from equation 2-8 and the

factor of 2_ arises from integration over the axial angle. The

integral is easily evaluated to yield:

B

n = n 1 - - _-- e e-Y_

O O

(2-9)

It must be emphasized that this equation is valid for a positive

potential energy only. Also, at the base, the potential, as defined,

vanishes and the density is just n .o

Next, the case of a negative electrostatic potential energy

must be considered. The distribution function is now given by

f = n ( mo 2_kT )

3/2 _ mv2/2kT l_i/kT
e e
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where Boltzmann's factor is now an increasing exponential function

of the electrostatic potential energy. The loss cone boundary for

v is again given by equation 2-8 but the parallel velocity is not un-
Z

restricted (see the lower half of Figure 8). In order to have a

2

positive kinetic energy, conservation of energy requires that Vll

be greater than or equal to _. The density integral is now:

2 2

= n (..mY_) 2n a + an o

o _

2 2

e - ¥ (Vll + v& - ¢) v dv dVll •

Performing the integration and rearranging terms, the electron density

in a region of positive potential is

n = n -erf ( ¢) - _ e
o o

B
y ¢

B -B
o

(2-10)

Equation 2-10 is valid for a negative potential energy only.

The electron density as a function of electrostatic potential

energy is plotted in Figure 9. The potential is a multiple-valued
B
o

function of the electron density for small values of'_-- (i.e. near

the base level) and small potentials. The depth of the valleys will

be reduced when electrons of interplanetary origin are included.

The choice of the proper potential corresponding to a density

specified in the multiple-valued region must be made in the light of
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the fact that no discontinuities of density or potential are allowed

along the field line.

2°5 Interplanetary Electrons

Along an open field line there are contributions from two

sources -- the ionosphere and interplanetary space. The electrons

of interplanetary origin will now be considered.

Again, it is assumed that the interplanetary electrons, due

to their large thermal velocity, are in equilibrium along the field

line and are immersed in a quasistatic electric field° The base

level of the interplanetary electrons is to be taken at a point in

the magnetosheath near the magnetospheric bow shock, in order to

avoid the necessity of applying the complicated shock relations to

this problem° This assumption restricts the application of the

present analysis to that section of the open field line which lies

on the earth side of the shock° The density at this interplanetary

base level is taken to be Cn where n is the ionospheric base level
O O

density considered previously and C is a multiplicative constant.

The temperature of those electrons whose trajectories pass through

the interplanetary base level is _T where T is the temperature of

the ionospheric electrons and r is a constant.

Under the above assumptions and noting that the magneto-

sheath electrons are well thermalized due to their passage through

the shock, the distribution function of the electrons of inter-

planetary origin is Maxwellian with the form:
2

3/2 mv _!_
2ktT kT_( m

f = Cn _) eO
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where _ is again the potential energy with respect to the ionospheric

base level° It is implicitly assumed that the ionospheric and in-

terplanetary base levels have the same potential -- this assumption

will be removed in the next chapter°

Using Liouville's theorem, those electrons which traveled

from, or can travel to, the magnetosheath base level can be described

as Maxwellian with the above distribution. Reflected particles (more

accurately, electrons reflected by the magnetic mirror) were ignored

in the calculations of the ionospheric electron component because

they did not come from the ionospheric base level and hence, did not

satisfy Liouville's theorem° However, electrons from the inter-

planetary base level can be reflected by the converging field lines

and still be considered Maxwellian with the interplanetary tempera-

tureo Thus, these particles must be taken into account. It must

be emphasized that due to the assumed lack of collisions, particles

in the loss cone cannot become trapped nor vice versa.

Consider those interplanetary electrons which travel along

the field line toward the earth° Integrating the above distribution

function over half of velocity space, the total electron density

ignoring those reflected particles which are traveling away from

- ¢/_kT
the earth is ½ Cn e " To this must be added the density of

o

particles which are reflected closer to the earth -- this is just

the density of particles outside of the loss cone° That is,

n = ½ Cn e - _/TkT_n(outside the loss cone)° But n (outside) =
o

½ Cn e - _/TkT-n (inside the loss cone). Therefore, it follows
o

that the density of interplanetary electrons at any point along

the open field line is given by:
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- $/_kTn = Cn e -n (inside loss cone) (2-11)
O

where n (inside) is calculated in a manner identical to that used in

the previous section. It should be noted that only positive loss

cone velocities (ioe. particles approaching the earth) are considered

here, whereas, both positive and negative values were considered in

the previous section. To find the total electron density at any

point only ionospheric electrons which travel away from the earth

are considered. The previous loss cone densities calculated are

valid if a factor ½ is applied°

Evaluating equation 2-11 for both positive and negative po-

tentials and adding the results to equations 2-9 and 2-10 (including

the factor ½) yields the total electron density along the field line.

For a positive potential the density is given by

n = Cn exp (¥_/_) + P (i) + CP (m) (2-12)
O

where

nbP(_) = f -erf (-V_/e) - _-- e
O

(B°-B)m -erf (_o_-B_))Je m .

For a negative potential the density is given by

n = Cn exp (-y_l_) + N (i) - C N (m)
O

(2-13)

where

o B
N(T) 1

0

(Bo-B) m
e

I e
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m
In the above equations _ =--andm Y = 2--_' Thus, Y_ = kT where

eV
V is the electrostatic potential° The quantity _ is plotted against

the electron density in Figure i0 for the assumed values T = 9 and

C = 0.3. These values of r and C imply that the electron density in

the magnetosheath adjacent to the shock is approximately one-third

that of the density at the base of the field line in the polar region.

These values were chosen with a certain proton model in mind--see

the next section. Varying the values of these two parameters changes

the scales of the density-potential profiles but does not change the

general shape as shown in Figure 10. Given the proton density at

any point, the principle of quasineutrality in conjunction with the

figure, yields the electrostatic potential. These computations are

valid for any type of magnetic field configuration which has a field

magnitude that is a monatonically decreasing function of the distance

along a field line from the magnetic mirror°

2_6 Proton Distributions

Given the proton density at any point along the field line,

equations 2-12 and 2-13 can be inverted numerically to yield the

electric field potential_ This technique will now be used to explore

a simple model of the charged particle motion and the parallel

electric field development along an open field line which has just

reconnected on the day side of the earth°

Since the characteristic time of the low energy proton motion

in the magnetosphere is comparable to the period of circulation of

the field lines (Dungey, 1966), the past history of the parallel
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electric field cannot be ignored for the protons as was done for the

electrons. The development of the proton distribution function with

time must now be considered° For computational ease it will be

assumed that the distribution functions describing protons of iono-

spheric and magnetospheric origin are steplike. That is, the dis-

tribution function is assumed to have a nonzero constant value in

a finite region near the origin in velocity space and vanishes out-

side of this region. This corresponds to replacing the character-

istic bell shaped curve of the Maxwellian distribution by a rectan-

gular shaped profile.

The prime requirement that a distribution function must

satisfy is that integration of the function over all of velocity

space must yield the density,

or

Fri.e. n = J J fdv dv dvx y z
--00 --00 --00

n = 2_o __ fv_ dVlldV Z .

It shall be assumed that the maximum value of the correspond-

ing Maxwellian distribution is the nonzero value of the step

function° The step function is then

f _ i M
27 n (_-_)

3/2

for ]vJ < v I and IV!l I ." v I

and f = 0 outside this region, where the boundary velocity v I is

determined by integrating over all velocity space. Then
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or

M )3/2 ii 1
n=n (_

3/2

n = n (_) v13

__ vl v dVll dv
v I

_2_kT. ½

Thus, a good value for the boundary velocity is vI = [-_---) where M

is the proton mass.

If the velocity boundaries defining the distribution are

constant, the distribution function for protons of ionospheric

origin is given by

3/2
f _ 1 M _ (2-14)

2_ nl (_) for ]Vlll, Iv I _ Vl IO

where

I0

v I ____ Ii2= ( ) and f = 0 elsewhere;

and that for interplanetary protons is

3i2

1 Dn I M )f - 2 (_ for iVlll, Iv I < Vl IN (2-14)
l -

where

IN 2.kT n

vI = (_)

1/2

and f = 0 elsewhere°

T is the ionospheric proton density (assumed identical to that of the

electrons), i T is the temperature of the interplanetary protons,

n I is the ionospheric proton base level density and Dn I is the

density of the interplanetary base, where _ and D are multiplicative

constants o
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The ionospheric base level proton density nI is not the same

as the ionospheric base level electron density n considered earlier.o

This is due to the fact that protons are not the only positive ions

which exist near the earth or near the shock, whereas the present

analysis assumesprotons are the only positive ions present. Such

an assumption is only valid in regions away from both base levels.

Thus the base level density nI is less than n .o

It has been assumedabove that the velocity perpendicular to

the magnetic field has the sameboundary as the parallel velocity.

It shall be assumedthat this boundary remains invariant with the

values given in equations 2-14. However, due to the electric field

parallel to the magnetic field, the parallel velocity boundary

changeswith time. If vU and vL denote the upper and lower parallel

velocity boundaries respectively, then the proton density is given

by the sum of the ionospheric density

M 3/2 (vll0) 2 I0 I0)
n = n I (2--_) 2 (Vu - VL

and the interplanetary density

3/2 (vlIN)2M
n = Dn I (_) 2

(2-15)

IN IN) (2-15)
(vU - vL

where the superscript I0 indicates ionospheric values and IN inter-

planetary values.

Since collisions are being ignored, the temperatures of the

interplanetary particles and ionospheric particles remain distinct

for all time. However, as the protons move along the field line,
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the perpendicular velocity boundary of the distribution function

should changewith time due to the conservation of the magnetic

moment. If a small enough time interval is considered during which

a particle travels a distance over which the field changes only

slightly, the perpendicular velocity boundary maybe considered a

constant at a fixed point.

2.7 Time Development

At the point of day side reconnection (see Figures 4 and 7)

the proton velocity boundaries are as shown in Figure ii, corre-

sponding to the values of equations 2-14 where D = 0.3 and _ = 9.

IO
The ionospheric protons are bounded by + vI , and the inter-

IN

planetary protons with a temperature 9T are bounded by _ v I =

10
3v I . The boundaries of the distribution function correspond to

the limiting values of the proton motion. Therefore, to calculate

the boundary changes with time, equation 2-4 is applied to the

individual protons making up the boundary. Along a circulating

field line this equation is

dVll _ --e _V _ ___B_B
d---f-= M _S - M _S " (2-16)

In this equation V is the electrostatic potential and _ the magnetic
Mv 2

1
moment which is equal to 2 B Since the boundary of the

perpendicular velocity is a constant and _ is an invariant, the

following calculations are valid for only small time increments

and/or slowly varying magnetic fields. The magnetic moment, although



-37-

rO

z
c:) <[ (n
bJ ,.J z

0 w I.-

-J I1:
,_ z o-

LIJ
-r

¢/)
o
z
0

Q
I,LI

o•
._1
_J
,cI

1
I,LI

Z
0
I-
0

a.

o
I-I m

o
I-I u

I

o

pc}

I

I-
0

Q.

m

m

I.Ll
0"

1.9

LI.



-38-

invariant for each individual proton, must vary with distance along

the field line.

Consider point A with parallel velocity v in Figure ii= In

a time At this point (or proton) moves a distance vat away from

the earth where a positive velocity corresponds to motion in this

direction. In this time to a first approximation, the velocity

changes, according to equation 2-16, to

e 3 V _ 8B 8v_
v + A v = v + ( M 8S M _S ) At - v _-_--At

8V 8B SI. + Sf

where _ , _, and _ are evaluated at S - 2 (see Figure ii).

It is assumed that during the process of reconnection, the

interplanetary and ionospheric protons interdiffuse slightly near

the magnetopause, which initially has its centroid at the point So

as seen in Figure ii. This region of interdiffusion will widen with

time along the field line as it is swept towards the night side (see

Figure 7)° The assumed interdiffusion initially yields a non-

vanishing finite slope of the Vll- distance plot near Soo The slope

of the distribution boundary in this region is taken as two (the

units are those used in Figure ii). Future experimental data will

decide whether or not there is some interdiffusion during the re-

connection process, and if so, how much°

The gradient of the magnetic field required in the equation

of motion is easily obtained by differentiating the exponential

function of equation 2-6 which was used as the model for the

magnetic field variation along the field line.

(2-17)
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Next, a schemeis needed to evaluate the electric field.

Initially, the proton distribution of Figure ii is assumed. At

any point along the field line the proton density is determined

using equations 2--15. From the principle of quasineutrality, the

electron density is then known, and equations 2-12 and 2-13 are used

to determine the electric potential corresponding to the parallel E

field along the magnetic field line. These latter equations cannot

be solved explicitly for the electric potential as a function of

density° They must be solved numerically. The Newton iteration

scheme (Booth, 1955) was used to calculate the potential correspond-

ing to a given electron density° The potential gradient in the

equation of motion is then determined by the method of finite
V . V(Sf) - V(Si)

differences. The derivative _ is replaced by Sf - S. where
1

Sf = S+O.001, S. = S-O.001 and all quantities in this expression are1

in earth radii.

The magnetic moment of a boundary proton at a given point on

the field line is that of a proton with the perpendicular velocity

I0 IN

v I or v I depending upon whether an ionospheric or interplanetary

proton is considered. Since the magnetic moment is also a function

of B, it will vary spatially along the field line but not temporally°

Since all quantities on the right-hand side of equation 2-17

are known initially, the evolution of the velocity boundaries in a

finite time increment may be approximated by the technique developed

at the beginning of this section° The new boundary velocities are

then known and the process can be repeated for further time

intervals.



-40-

In order to perform the actual numerical computations, two

numerical parameters must be fixed: T the ionospheric base level

temperature and the base level of the field line. Since distances

of the order of i0 Re are being considered, the base level can be

assumedto be at the earth, i.e. B = B(S=IRe). The temperature,o

on the other hand, at high latitudes in the upper ionosphere usually

ranges between i000 and 3000 degrees Kelvin (Geisler and Bowhill,

1965) and is essentially the same for both the protons and electrons.

The lower temperature will be used in these calculations and the

ionospheric particles are taken to be isothermal along the field

lineo Choosing a higher temperature would only change the magnitude

of the results but would not change the general form.

2.8 Computations

The 7074 IBM computer of the Pennsylvania State University

Computation Center was used. Due to the complicated nature of the

resulting proton velocity distributions, it was found that the

calculations could not be performed in an automatically computed

self consistent iteration scheme. After each iteration the data had

to be scanned by hand in order that the interval between sample

points could be varied depending upon the complexity of the region

being considered° Also, care had to be taken that no multiple upper

and lower velocity boundaries were ignored.

For a temperature of i000 degrees, the ionospheric proton

velocity boundary (Vl I0) is approximately 7 km/sec. A proton with

this velocity travels a distance of 0.i Re in 88 seconds° This time
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interval is selected for the computations because it is large enough

to keep computing time at a minimumand is small comparedto the

circulation period of the flux line ( _ i day). The largest distance

interval used is 0.I Re. This interval was selected only for regions

in which the density and hence, the electric potential were constant

over a considerable range.

The effects of the relationship between the base level elec-

tron (no) and ion (nl) densities must now be considered° Previous-

ly, it was shownthat the proposed model of densities in the outer

magnetosphere requires that nI be less than n ° Due to the deficiencyo

of proton density at the ionospheric base level, n I must be chosen

such that the potential at or near the base becomesnegative, be-

cause adding the deficient density will cause an increase in poten-

tial, whereas, the potential at the base must vanish. The base

potential vanishes because it is the reference potential for the

entire field line. Figure 12 depicts the initial potential profile

for two values of nI, It is seen that raising the base level ion

density does not greatly disturb the general functional form of the

potential or the corresponding parallel electric field. Increasing

the density only shifts the potential curve upward and does not

affect the relative values. In the following calculations, the

value nI = 0.5no is selected. Experimental measurementsare needed

in order to determine whether or not this is a truly realistic

value.

A few important characteristics of the initial electric

potential profile along a reconnected field line, as shownin
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Figure 12, should be noted. First, near the ionospheric base level,

there is a large oscillation in the electric potential. This is due

to the rapid decrease of the magnetic field in this region and to

the oscillatory nature of the electron density-potential profile in

this region (see Figure i0). The present analysis really breaks

down in this region due to the fact that the entire proton population

is not considered and because the perpendicular velocity boundary

will in actuality change with time in this region. Therefore, this

model shall only be considered at great distances from the earth.

It can also be seen that the potential decays from a positive

value on the earth side of the interdiffusion region to a negative

value in the magnetosheath. This suggests that some electrons will

be trapped between an electric potential barrier and the low alti-

tude magnetic mirror. In the present calculations these trapped

particles are not taken into account. The potentials considered

are of the order of a volt.

The ion velocity configuration after a period of 88 seconds

is plotted in Figure 13. The velocity boundaries are normalized

I0
with respect to v I . It can be seen that the protons are

accelerated towards the magnetosheath by the parallel electric

field in the interdiffusion region. Outside of the interdiffusion

region, there is very little variation in the proton boundary other

than a simple translational motion. Since the density is directly

proportional to the sum of the widths of the velocity profiles, it

follows that the density develops spatial and temporal variations
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in the interdiffusion region as it decreases from the undisturbed

magnetospheric value to the assumed constant magnetosheath value.

The potential profile (Figure 14) after the first iteration

retains the same form as the initial configuration except that the

region of decreasing potential is much wider. As the time increases

the potential begins to oscillate and the electric field propagates

away from the initial point of reconnection on the field lineo

The velocity profiles for further iterations appear in

Figures 15 and 16o It is apparent that the number of oscillations

increase with time and that the amplitudes can become quite large.

It can be seen that the leading edge of the ionospheric particles

propagating into the magnetosheath steepens and the electric field

associated with this steepening increases with time. Eventually,

a discontinuity in density and electric field occurs° Since quasi-

neutrality occurs only over distances greater than the Debye length,

these discontinuities cannot be analyzed within the framework of

the present model° In fact, it may be possible that the inclusion

of trapped particles and a more realistic distribution function may

not yield such regions.

Due to roundoff errors and the approximate calculations of

the field gradients, computations of this type will yield violent

oscillations after just a few iterations° A more valid approach

would be to perform a series of iterations many times independently

and average the results° Such a procedure, however, could not be

performed within the time limits allowed for computer computation

at the Pennsylvania State University.
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Similar calculations were performed for the case D = 3, i.e_

when the interplanetary density is three times the magnetospheric

proton density initially° In the light of the exceedingly low

densities measured by whistler studies in the outer magnetosphere,

the magnetospheric density may well be less than the magnetosheath

proton density at reconnection on the day side. The initial poten-

tial configuration for this case appears in Figure 17 and the

velocity profile after one iteration in Figure 18. It is seen that

the potential increases as the field line is traversed in the

direction of interplanetary space° This yields a parallel electric

field which is directed toward the earth. Hence, the protons are

accelerated down the field line, as is seen in Figure 18, in contrast

to the previous situation where the electric field was directed into

the magnetosheatho In general, if D _> 1 the protons will be accel"

erated towards the earth; whereas, if D < 1 they will be accelerated

away from the earth. The width of the potential plateau formed in

the case D = 3 (see Figure 17) is dependent upon the initial value

of the boundary velocity gradient.

In the preceding computations, it was assumed that no protons

or electrons are trapped between the magnetic mirror and a potential

barrier or between two potential barriers. The next chapter will

show how trapped electrons may be included in the analyses.
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CHAPTER III

ELECTRON DENSITY ALONG AN OPEN FIELD LINE

WITH A POTENTIAL MINIMUM

3.1 Introduction to the Problem

As seen in the previous chapter, when a closed magnetic field

line connects to the interplanetary field on the day side to form an

open field line, a parallel electric field results in the region of

interdiffusion of the ionospheric protons and the hotter magnetosheath

protons. If the magnetospheric density is initially less than the

magnetosheath density along the field line considered, the electric

potential on the magnetosheath side of the interdiffusion region is

negative with respect to the potential on the ionospheric side (see

Figure 12). The resulting parallel electric field in the inter-

diffusion region is, in general, directed outwards from the earth.

Hence, some electrons will be trapped between the interdiffusion

region and the magnetic mirror formed by the converging field lines

near the earth. The present chapter will consider the electron

density along an open field line which has one minimum of electro-

static potential corresponding to the parallel electric field.

Again, it is to be assumed that collisions are absent, and

that the electrons present are Maxwellian with a temperature corre-

sponding to the magnetosheath value or the ionospheric value, de-

pending upon which base level their trajectories originate in, or

depending upon their place of origin° The electrons trapped between

the minimum of electric potential and the magnetic mirror will be

characterized by the ionospheric temperature because scattering of

-52-
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electrons into the trap takes place near the ionosphere where most

collisions occur, and where electrons of interplanetary origin are very

scarce. Hence, the region of velocity space corresponding to trapped

electrons is only very weakly coupled to the region of velocity space

which contains interplanetary distributions.

Figure 19a depicts typical loss cone configurations at a point

on an open field line between a magnetic mirror near the ionosphere

and a potential barrier near the magnetopause. The trapped region is

that region of velocity space which is outside of both loss cones.

This and other configurations will be analyzed in detail in later

sections.

The assumption that the trapped particles are of ionospheric

origin at time t = 0 is valid at all later times also if the magnitude

of the potential minimumdoes not vary too rapidly with time. However,

if the height of the potential barrier increases significantly in a

time period which is shorter than the characteristic travel time of

an interplanetary electron from the barrier to the ionosphere and back,

electrons which had barely sufficient energy to overcomethe barrier

will becometrapped (see Figure 19b). Since the magnetospheric density

is small, and because only slow potential variations are allowed in the

quasistatic approximation used, this contribution to the trapped par-

ticles can be ignored.

The trapped electrons have a bounce time which is short com-

pared to the characteristic time of the reconnection cycle. Hence, the

density in the trap can, in principle, be evaluated by using the long-

itudinal invariant. In this region of velocity space, collisions and
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the variation of the potential minimum with time are important. Since

the interplanetary electrons in the trap can be ignored, the trapped

electrons will be in approximate equilibrium with the ionospheric par-

ticles and hence, can be characterized by a Maxwellian distribution.

Assuming a conservative parallel electric field, the electron

density along a field line is determined by integrating the distribu-

tion functions of the electrons over the allowed regions of velocity

space as was done in the previous chapter. Previous calculations as-

sumed that the ionospheric and magnetospheric base levels were at the

same potential. This stringent condition will be replaced by the more

realistic condition that the net electron current along the field

direction vanishes.

3.2 Base Level Potentials

In order to specify the relationship between the ionospheric

and interplanetary base level potentials, an additional condition must

be found. Ideally, the electron current along the field line _e should

equal the negative of the proton current _p (i.e. _e = -_p)" However,

p, as seen in the previous chapter, is small compared to the product

of the charge density and the thermal velocity of electrons in the

magnetosphere. Hence, a good approximation for the electrons along

the field line is _e = 0. Since the steady state approximation is

used for the electrons the divergence of the electron current (div

e ) vanishes. Thus, if the electron current vanishes at one point

along the field line, it vanishes everywhere. For convenience this

condition of vanishing electron current will be applied at the point
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where the electric potential is a minimum. It must now be determined

which electrons contribute to the current at the minimum_

Consider the schematic diagram of Figure 20ao This figure de-

picts the possible trajectories for the electrons along an open field

line with a minimumin the electric potential_ As can be seen in the

figure, there are three general types of trajectories for particles

of interplanetary origin: (i) Electrons which pass over the potential

barrier and are lost in the ionosphere; (2) Electrons which pass over

the barrier but are reflected by the magnetic mirror on the earth side

of the minimum; and (3) Electrons which cannot pass over the barrier

and hence, must remain on the magnetosheath side of the potential

minimum° These trajectories are labeled S° (i = I, 2, 3) in Figure
X

20.

Electrons of ionospheric origin also have three general types

of trajectories: (i) Electrons which are reflected by the potential

barrier; (2) Electrons trapped between the magnetic mirror and the

potential barrier; and (3) Electrons which pass over the barrier and

are lost beyond the magnetosheath base level° These trajectories are

denoted by E i (i = i, 2, 3). (The trajectory labels E and S are

suggestive of earth and sun_)

The above classifications were made under the assumptions that

there is only one significant potential minimum, and that the magni-

tude of the magnetic field decreases monotonically along a line of

force away from the earth. Thus, there is allowed no potential-

potential or magnetic-magnetic trapping. However, if desired, the
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same technique employed here could be used to describe the trajectories

occuring in the more complicated situations.

Returning to an evaluation of the electron current at the point

of potential minimum, it is apparent that not all electron trajectories

contribute to the current at this location. Interplanetary electrons

of types S2 and S 3 yield no net current -- nor do ionospheric particles

of types E 1 and E2. Thus, only electrons whose trajectories pass from

the ionospheric to the magnetosheath base level must be considered in

determining the electron current at the minimum.

The ionospheric loss cone at a given point along a field line

is defined as that region of velocity space which contains, at the

considered point, only those trajectories which pass through the

ionospheric base level. As was done in Chapter 2, the equation for

the ionospheric loss cone boundary is determined using the conserva-

tion of energy and the first adiabatic invariant, which is the magnetic

moment. If the subscript E denotes conditions at the ionospheric base

level and the subscript M denotes conditions at the point of minimum

potential, then the equation for the ionospheric loss cone boundary at

the point of minimum potential is

2

2 VllM + (_M - _E )

VZ M BE
-- -- 1

BM

where _ is _Xm (Potential Energy) and #M - #E is greater than zero

because the potential energy of an electron is a maximum at the point

of potential minimum. All electrons which have perpendicular
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velocities less than the values determined from the above equation

possess trajectories which pass through the ionospheric base level.

The loss cone hyperboloid and the regions corresponding to the various

trajectory types found at the minimumappear in Figure 20b.

The only type of ionospheric trajectory which can reach the

minimumis E3. In Figure 20b it is seen that the region of velocity

space occupied by these trajectories consists of the area of the loss

cone for which Vll< 0 (motion towards the earth is defined as posi-

tive). Denote this region by A and let B be the region of velocity

space corresponding to interplanetary trajectories which pass through

the minimumpoint (B is just the complementof A). The net electron

current along the field line at the point of minimumpotential in the

direction towards the earth is then given by

where

j _.
fE Vll d v + I f d vs vii

A B

. m .3/2

fy = ny i2--_y J
m (Vll 2 2)

exp (- 2kTy + vl ) o

m

exp (- 2kTy (_M- _Y) ) (3-1)

and Y is a subscript label which indicates base level (i.e. either E

or S) conditions.

Since the integrands of the above integrals are odd functions

of Vll the S2 trajectories (Figure 20b) do not contribute to the

current. Therefore, j = js-JE where
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Iv E1112

112+ BM - B

jy = BM i 2_ fy VllV _ d v Z d Vll
O O

Integrating this expression yields:

jy = ny \2_m/ i BE exp ( 2kTy BE BE) o

-- -- 1

BM

m

exp ( - 2kT----_( BM - By) ). (3-2)

3-2 :

where

Since the net current vanishes, JE = JS' and hence from equation

mB _i/2 mBEs IT E2kT 2kT-----E F (TE)n e s = n e =_ G (3-3)
s e \T--ss/ F(T S)

BE - BM
F(T) = 1 exp

BE Im " )2kT _E i

BM

and where the reference level for the potential scale is taken at the

minimum (i.e., BM = 0). This expression yields a relationship between

the interplanetary and ionospheric base levels potentials when the base

level electron densities and temperatures and the magnetic field at

the ionospheric base and at the minimum are specified.

Taking as characteristic values TE = 6000°K, TS = 600, 000°K

and assuming that the potential minimum is near the magnetopause so
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that BE/BM is approximately i000, equations 3-3 were used to calculate

the base level potentials relative to one another as the ratio of base

level densities ne/ns was varied. The results are plotted in Figure

21. The F factors in equation 3-3 becomesignificantly different

from one only near the origin as is demonstrated by the curvature of

the potential profiles in Figure 21.

Taking the ratio ne/ns to be i00, the electron ionospheric

temperature was varied and the changes in the potential profiles were

determined (see Figure 22). As shownin the figure, an increase of

TE corresponds to a decrease in the order of magnitude of the inter-

planetary base level potential as comparedto the ionospheric base

level potential. This is to be expected since the Boltzmann factor

contains the ratio of potential to temperature. In the limit TS =

TE = T the potential of the ionosphere base is greater than that of
ne

the magnetospheric base by the additive factor kTln--. Thus, the
n
s

potentials of the base levels are equal only when the base level

densities and temperatures are equal -- in the physical realm of the

magnetosphere this will never occur.

Thus far the relationship between the base level potentials

has been derived. In order to determine the explicit values in a

given physical situation, it will be assumed that the electron

density at the point of minimum potential is known. The relationship

between the potentials and the density at the minimum will now be

derived.

Consider the regions A and B of velocity space which were

defined earlier. A is the region corresponding to trajectories of
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type E3 (see Figures 20) and B is the complement of A. The density

at the minimum is then given by

Since the second integral in this equation can be written as

_B f dv = _ii f dv - /A fS % S % S

Space

the density at the minimum is given by:

nM = 2_ fs vl d v d Vll+ 2_

--co O

Vll + _M - CE I 1/2BE _

BM 1 o

(fE - fs ) v d v d_ vii

where f is given in equation 3-1o Integrating this expression, the

density at the minimum, nM, is found to be:

I I 1 nEnM = G 1 - _ F(Ts) + --2 exp (_----_--_2kTE_E ) F(T E) (3-4)

where G and F(T) are, as defined in equation 3-3, functions of only

the ionospheric base level potential°

Figure 23 depicts the variation in density at the minimum as a

function of the ionospheric potential using the ionospheric base

level density as a variable parameter_ This figure shows that the

density at a fixed base level potential is an increasing function of

n and at a fixed base level density is an increasing function of the
e

electron potential energy. Physically, this is expected because an
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increase of density at the base level creates an increase in the number

of electrons available to reach the minimum, and a decrease in potential

energy at the earth increases the potential barrier which the electrons

must surmount in order to reach the mlnimumo

Figure 24 is a similar plot using the ionospheric temperature

as the variable parameter, Here it is seen that the density, at a

given potential, increases rapidly as the ionospheric temperature

increases_ This is expected physically since an increase in tempera-

ture implies an increase in the average enezgy of the ionospheric

particles, and hence, an increase in the number of electrons which can

overcome the potential barrier_

Figure 23 indicates that there is an upper limit to the electron

density which can exist at the point of minimum potential° This figure

in conjunction with the results of Figure 21 indicates that this limit

is not necessarily the density determined for a vanishing base level

potentialc In fact, there could be a nonvanishing lower limit to

the ionospheric base level potentials which are allowed physically.

The density upper limit however occurs either at # = 0 or _E = 0.s

If the ionospheric base level density is greater than 100/cc, as it

probably is in reality, the upper limit of density is obtained from

equation 3-3 by letting _ = O= This upper limit is found to be
s

n = m s + _ F(Ts) ( _E/ - i) j

Since F(T S) is a very small quantity (oi the order of BM/BE), the

maximum allowable electron density at the point of minimum potential

is approximately equal to nsc Hence, ii the density in the
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magnetosphere is greater than the magnetosheath density, as was

assumed previously, the minimum of potential will probably also

correspond to a minimum of electron density°

Another interesting _acet of the density at the minimum is
m_ S

that for TE = T S = T, the density is just n e _-k_ or equivalently
m_ E s

nEe _-T. This is expected because the equality of base level tem-

peratures creates a symmetrical problem: electrons can be considered

as occupying all of velocity space at the minimum and as referred to

either one of the base levels (i.e., fs = fE )"

From the preceding results, it is now possible to specify

uniquely the base level potentials, given the electron density at the

point of minimum potential. For example, if nM = n S = 5 electrons/

cc (a value characteristic of the medium on the sunward side of the

bow shock), n E = i00 electrons/cc, and T E = 10 -2 TS = 6000°K, then

from Figure 23 or equation 3-4 the ionospheric potential energy is

-0.86ev and using equation 3-3 or Figure 21 the interplanetary po-

tential is seen to be zero. If the density at the minimum is changed

to nM = 0.5 electrons/cc, the potential energy of the ionospheric

base level decreases to -2.4 ev and the interplanetary base potential

energy drops to -120 evo Thus, a technique is now available for the

determination of the relative base level potentials. It now remains

to determine the electron density distributions along the open field

lines. This will be done in the following sections.

3.3 Loss Cone Configurations

In order to determine the density at any point along an open

field line with a minimum of electric potential corresponding to the
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parallel electric field present, it must be determined to which

regions of velocity space ionospheric electrons belong and to which

regions magnetospheric electrons belong. This initially requires a

knowledge of the equations for the ionospheric loss cone and the

loss cone corresponding to the potential barrier.

The point of minimumpotential divides the field line into

two parts: interplanetary and magnetospheric. From the results of

Chapter 2 it is expected that initially at reconnection on the day

side, this point is at the magnetopause. Eachpoint on the field

line can be further classified by its potential relative to the

ionospheric base potential (i.e., _ - BE _ 0 or _ - _E < 0). Again

it must be emphasized that the potential energy corresponding to the

minimumof potential is a maximumwith respect to the potential

energy values along the field line. Thus, each point on the field

line falls within one of four classifications:

class i: _ - _E _ 0 B > BM

class 2: _ - _E < 0 B > BM

class 3: _ - _E _ 0 B< BM

class 4: _ - BE < 0 B < BM •

(NOTE: BM is the magnetic induction magnitude at the point of the

potential minimum.)

As has been done in previous cases, using the first adiabatic

invariant and conservation of energy, the equations describing the

ionospheric loss cone and the potential minimumloss cone for points
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on either side of the minimumcan be obtained. There are four specific

equations which are obtained:

2
2 (_M- _) - v_

io Ellipse: v = (minimumloss cone)
-- _ BM

(i - E-

2 _
2 Vll + E )

2. Hyberbola: v = (ionosphere loss

-- (opening upwards) _ BE cone)
(_- - i)

2
2 Vll - ($E - _)

3. Hyperbola: v = (ionosphere loss

-- (opening sideways) l BE cone)
(E-- l)

2
4. Hyberbola: v

-- (opening sideways)

2

vii - ($M- _)
(minimum loss cone)

where the quantities in parentheses are assumed to be positive.

Therefore, given the relationship between _ and _E,M' and B and BM,E,

the ionospheric and potential minimum loss cone equations can be

determined at a glance from the above equations.

Each of the four classes discussed previously is a region in

which the velocity boundaries of the electrons are described by a

pair of the preceding equations: the potential minimum loss cone is

either _ or _ and the ionospheric loss cone is either _ or _. For

example, for spatial points in class i, which is a region between the

ionosphere and the minimum, the two loss cones are defined by equations

and _ above. The loss cones corresponding to all four classes are
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are plotted and labeled in Figure 25. The labels I and M are used to

indicate the ionospheric loss cone and the potential minimumloss

cone curves respectively.

In order to determine the velocity boundaries of the iono-

spheric electron and interplanetary electron velocity distributions,

it must be knownwhether or not each pair of curves actually inter-

sect and if so, what is the point of intersection. From geometrical

and algebraic manipulations it is easily seen that if there is inter-

section, the points of intersection are (Vll , v ) where

and

2 BE - B B - BM

vii - BE - BM (¢M - _) BE _ BM (_ - _E ) (3-5)

2 B

v - BE - BM (¢M - _E )"

The conditions for intersection are then obtained for each class of

points. They are tabulated below:

_M - ¢ _ - _E

class i B - BM _ BE - Band class 2:

CM - ¢ ¢ - CE
-- >

class 3 BM B - B - BEand class 4:

(3-6)

It can readily be seen from the class definitions that the conditions

for classes 2 and 3 are always satisfied. Hence, there will never be

a situation in these classes which will require nonintersecting loss
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cones. However, the nonintersecting cases cannot be ignored for class

i and class 4 regions.

Thus far, the equations defining the loss cones at a given

point along the field line have been determined° Now it must be

determined which regions of velocity space are occupied by electrons

of ionospheric origin (these electrons have a temperature TE and a

distribution function fE ) and which regions are occupied by magneto-

sheath particles (these have a temperature T S and a distribution

function fs ). The distribution functions fE and fs are specified by

equation 3-1. Electrons of ionospheric origin (this includes those

electrons which are trapped between the magnetic and potential

mirrors) will be considered first.

In order to interpret positive and negative values of vii , a

direction must be defined as positive. The convention will be that

vii < 0 corresponds to the velocity of a particle which is moving

along the field line away from the earth.

The E trajectories defined in Figure 22 correspond to

electrons which are characterized by the temperature TE and the

Maxwellian distribution function fE" On the earth side of the po-

tential minimum all three types of ionospheric trajectories exist.

Beyond the minimum in the magnetosheath only one type of ionospheric

electron trajectory exists corresponding to electrons which have

sufficient energy to overcome the potential wall. The velocity

regions occupied by each of these trajectories must now be considered.

The total velocity region allowed to ionospheric electrons is then

obtained by superposition.
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At a given point, the velocities of ionospheric particles with

trajectories E1 originating within the ionospheric base level (i.e.,

within the ionospheric loss cone) and which are reflected by the

potential wall (ioeo, outside the minimumloss cone) lie within that

region of velocity space which is commonto both the ionospheric loss

cone and the region outside of the potential minimumloss cone. The

velocity regions corresponding to the other trajectories can be

similarly deduced°

It is more descriptive and convenient to describe the allowed

velocity regions by using the notation of set theory° Let the region

of velocity space corresponding to the ionospheric loss cone region

be denoted by I and the region corresponding to the minimumloss

cone by M. Then the regions corresponding to the three types of

ionospheric electron trajectories can easily be determined in terms

of these two regions.

The velocity region for electrons whose trajectories orig-

inate at the ionospheric base or below it and are reflected by the

potential minimum is just IO M where - denotes the (set) comple-

ment. For trapped electrons the corresponding region of velocity

space is I_ M, and for ionospheric electrons which arise at or

below the ionospheric base with sufficient energy to pass over the

potential barrier it is l(v_ O)_ M. Hence, when B > BM (on

the earth side of the minimum), where all three types of E tra-

jectories exist, the velocity region corresponding to electrons of

temperature TE and distribution function fE is given by (I_ M)_

(_ f][ (Vll! O)f]M] or [I(Vll O)n M] U Similarly,
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whenB < BM, the corresponding region is just l(Vll _ 0)_ M. Using

these relations in conjunction with the actual forms of the loss

cones (Figure 25), the explicit regions occupied in velocity space

can be obtained. The velocity region occupied by electrons with the

distribution function fE is shownshaded in Figure 26 for intersect-

ing loss cone boundaries and in Figure 27 for nonintersecting bound-

aries. All four classes are included in the latter figure, but it

is to be rememberedthat points in the second and third classes

always have intersecting loss cone boundaries in the physical model

under consideration.

Electrons of interplanetary origin which have the temperature

TS and Maxwellian distribution function fs' could be similarly treat-

ed. However, there is a muchsimpler approach. At any point along

the field line all of velocity space is filled by the plasma con-

sisting of ionospheric, trapped, and magnetosheath electrons, and

because collisions are assumednonexistent, all three components

occupy disjoint regions in velocity space. Since trajectories which

do not comedirectly from the ionospheric or magnetosheath base

levels are by definition trapped and characterized by the temperature

TE, the velocity region occupied by interplanetary electrons is just

the complementof that region occupied by the TE electrons. The un-

shaded regions in Figure 25 and Figure 26 correspond to electrons

of interplanetary origin.

The next section will describe how the preceding results are

to be applied in order to determine the electron density - electric

potential profile along an open field line.
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3.4 Electron Density Profiles

The velocity regions occupied by electrons with the distribu-

tion functions fE and fs have been determined for each of the four

classes of points defined previously. In order to determine the

density at a given point on the field line, the distribution functions

are integrated over the corresponding velocity region°

The total electron density is given by:

n = _ fE dv + f f dv% S %

RE as

where RA is the allowed velocity region for electrons characterized

by the distribution function fA o Since Rs is just the complement of

RE ,

f f dv = 2_ f v d v d - dv
s % s I l vii

R RE
S

Therefore

fn = 2_ fs v d v£ d Vll+ (fE - fs ) dv

-oo o RE

m

Since fA (equation 3-1) is proportional to ng exp [- 2kTA

(_ - _A)], the density can be written in the general form:

Ill In

- 2k---_ (_-_s) n - 2-_E (_-_E)
e s (i i Ic Ts en = n s - _ F ( , ))+ T e

F (Ic, TE) (3-7)
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i
where _ F (Ic, TA) denotes the function obtained in class I by inte-

grating fA exp [ m
2kTA (_ - _A )] over the velocity region RE . The sub-

script c is a dummy label. For intersecting loss cone boundaries

1
c E i and for nonintersecting boundaries c E n. The factor _ has

been drawn from the integrals.

The limits of integration for the required integrals can

easily be deduced from Figures 25, 26 and 27 and equations 3-5.

Since the determination of F (Ic, T) is a process of straightforward,

though tedious integration, only the final results will be given be-

low. The potential energy at the minimum is taken as zero.

Let A = m _ = _-BM ,

CE-- _B ' P=

A 2 (_- BE) B

E2 = exp - ( BE - B )"

explicitly by :

A2 _B

E1 = exp ( B - BM ) and

Then the F functions are given

E1

F (li, T) = i + erf (PA) - _ [arf (PACM) + arf (_ ACM) ]

E2

- C_ erfc (a AC E )

F (in, T) --i + erf (PA) -

arf (PACM) E 2

CM CE

E1

F (2i, T) = I + erf (PA) - _M [arf (PACM) + arf (_ ACM)]

E2

- C_ erfc (_ AC E )
(3-8)
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E1
F (3i, T) = erfc (PA) - _M [erf (_ ADM) - erf (PADM)]

E2
- C_ erfc (_ ACE)

E1
F (4i, T) = erfc (PA) - _M [erf (_ ADM) - erf (PADM)]

E2
- C_ erfc (_ ACE)

E1
F (4 , T) = erfc (PA) - --

n DM
erfc (PADM)

B - BE B - BM
where _ = BE _ BM _ - BE _ BM (_ - _E )

The notation arf (x) is proposed for the Dawson function which

2 x x

is _--- e d x. Erfc (x) is the notation commonly used for

the complement of the error function 1 - erf (x).

Equations 3-8 in conjunction with 3-7 yield the electron

density- electric potential profile on any line of force along which the

magnetic field magnitude varies monotonically, and on which there

is one significant minimum of potential corresponding to the parallel

electric field present°

3.5 Numerical Computations

The 7074 computer of the Pennsylvania State University wss

used to obtain the n_nerical profiles. Dawson's function was

evaluated by interpolating between the tabulated values in the
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NBS Handbook of Mathematical Functions (1964). Due to the rapid

divergence of this integral, logarithmic interpolation was used.

For values of x less than 3.2, the error function was evalu-

ated using the expansion:

2

erf (x) = i - (aI t + a2 t2 + a 3 t3 + a4 t4 + a5 t5)e -x + g (x)

i

where t = i + p x ' p = 0.3275911, aI = 0.25482959, a2 = 0.28449673,

a 3 = 1.4214137, a4 -- 1.4531520 and a5 = 1.0614054o The absolute

value of the remainder term g is less than or equal to 1.5 x 10 -7 .

For values of x greater than 3.2, a double precision library sub-

program was used to interpolate between the tabulated values of

erfc (x) listed in the NBS Handbook.

The following representative values are chosen for the

physical parameters:

TE =

T S =

n =
e

n =
S

6000 ° K

600,000 ° K

i00 electrons/cc

5 electrons/cc

At the point of minimum potential it was shown previously that there

is probably a minimum of density alsoo Hence, a reasonable value for

nM is 0.5 electrons/cc. These values are rather arbitrary due to the

lack of sufficient measurements of low energy particles in the outer

magnetosphere. Since the immediate concern is the determination of

general characteristics of the density profile, the exact values
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for these parameters are not crucial° However, in order to determine

the magnitude of the parallel electric field in the magnetosphere it

will be essential that these parameters be knownexactly° Hope-

fully, these quantities will be accurately determined in the near

future.

For a density at the minimumof 0.5 electrons/cc, the technique

developed in Section 3.2 can be used to determine the base level po-

tentialso Using this method, the potentials V are found to be VE =

2.4 ev and V = i20 ev. Thus, the potential of the interplanetary
S

base level is much larger than that of the ionospheric base. This

was anticipated in Section 3.2°

Using the above parametric values, the density-potential

profile was evaluated fo_ a few points on the field line_ The re-

sulting curves are plotted in Figure 28 where the notation R or

Ratio is equilvalent to the ratio BE/B where BE is the magnitude of

the magnetic field at the ionospheric base level° Only the region

0 < V < 3°5 ev was plotted° More negative values of the potential

energy are uninteresting because the density rapidly becomes a

simple exponential function of the potential energy° Expanding the

scale would only extend the straight lines which are already apparent

in the figure_ Also, R is assumed to be i000 at the point of the

minimum -- this value is characteristic of the magnetopauseo

As expected the density at V = 0 approaches 0o5/CC as the

point considered moves towards the point of the minimum° It is also

apparent that the density of 0°5 electrons/cc is the lowest density

obtainable on the field line. Therefore, the minimum of potential



-83-

LIJ
a

Z
0
n-
!-

bJ
J
ILl

103

102

I0;

ioo

R=900

II

T e = 6000 ° K

Ts = 600,000 = K

nE = I00 ELECTRONS/cc

ns = 5 ELECTRONS/cc

nmin = 0.5 ELECTRONS/cc

VE =-2.4 ev

Vs = - 120ev

Bmin = 50 7

Be = 5x 104 7"

RATIO > I000

RATIO = BIB = R
e

I 4

-I -2

POTENTIAL ENERGY (ev)

I

-:5

FIGURE 28. ELECTRON DENSITY-

POTENTIAL ENERGY PROFILES



-84-

in this case occurs at the same place on the field line as the mini-

mum of electron density° It should be noted that at the minimum

(ioe0, at Ratio = i000), the density profile degenerates into the

single point (_ = 0, n = 0.5)°

On the earth side of the minimum (i.eo, points on the field

line with Ratio < I000) the profiles for V < 0°5 ev show an interest-

ing change near Ratio = 200° In this spatial region, the curves in

the semilog plot of Figure 28 change their apparent curvature. At

low altitudes on the field line (ioeo, at small values of R) the

profiles are concave upwards; whereas, for points near the minimum

the curves are concave downwards° This change is clearly seen in

the enlarged diagram (not drawn to scale) on the right side of the

figure° This apparent transition corresponds to a change from non-

intersecting class 1 loss cones (see Figure 27), to intersecting

class 1 loss cones (Figure 26) as B increases (ioe., as the point of

the potential minimum on the field line is approached).

Beyond the point of the minimum (ioeo, for the points B >

I000) only one density-potential profile is drawn° The computations

indicated that the profiles in this spatial region change insignifi-

cantly from point to point on the open field line0 It is seen in

the figure that the electron density varies very slowly with po-

tential at points in this region° If the profile for R > i000 was

extended to the potential energy of -120 ev (the interplanetary

base level value) it would be found that the density would approach

5 electrons/cc (the interplanetary base level value)° Electrons of

ionospheric origin contribute very little to the electron density at
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points beyond the minimum. The class 3 and class 4 loss cones (see

Figures 26 and 27) which are applicable in this spatial region,

contain very few ionospheric electrons. In other words, only those

few electrons in the far tail of the Maxwellian distribution function,

which describes the ionospheric particles, have sufficient energy to

travel over the potential barrier into the magnetosheatho Most of

the ionospheric electrons are reflected by the barrier and never

reach the region R > i000.

3.6 Further Considerations

The techniques developed in this chapter are valid for arbi-

trary monotonic magnetic field configurations. However, the analysis

was performed with the physics of the magnetosphere in mind. Logi-

cally, having looked at electron motion, it should now follow that

the proton motion along an open field line just after reconnection

on the day side be considered. The proton model developed in Chapter

2 could be used in conjunction with this electron density model to

determine the time development of the parallel electric field, and

also the proton motion along a field line as it is swept towards

the night side° Such an analysis is prohibited by the exceedingly

long computer time required.

Although prohibited by computer limitations from extending

the electron density model, it is apparent that a general method has

been devised which could be applied to the motion of thermal colli-

sionless plasmas along more complicated magnetic fields° The

technique can be extended to consider the density-potential relation
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in a field with potential-potential or magnetic-magnetic trapping

if the distribution of the trapped particles is characterized by the

Maxwellian function° Suchmay be the case in static plasma con-

figurations. Thenby measuring the elect_on density along the magnetic

field lines, the parallel electric field can be determined.

Shifting attention from the day side reconnection to the night

side reconnection process, the next chapter will explore a different

type of model which might describe the plasma motion along closed

field lines which travel towards the day side after having re-

connected on the night side°



CHAPTERIV

NIGHTSIDE ANALYSIS

4.1 General Description of the Model

In previous chapters, the ambient plasma distribution along

an open field line on the day side of the earth was considered for

a short time period after connection to the solar field. Electrons

of ionospheric and interplanetary origin were assumed to inter-

diffuse immediately along the entire field line due to their large

thermal velocities. The protons, on the other hand, had to be

analyzed time dependently due to their rather small thermal veloc-

ities. These assumptions are relevant also to particles on those

closed field lines in the outer magnetosphere which form a part of

the circulation cycle. Hence, the electrons can be considered

from the quasistatic viewpoint; whereas, the proton motion is de-

pendent upon the past history of the parallel electric field.

The field line circulation on the night side of the earth

is depicted in Figure 29 for the region near the reconnection

current sheet in the noon-midnight meridian plane. As time in-

creases, a field line and its associated "frozen-in" plasma move

in the direction of increasing Roman numerals. Before reconnection

(field line I) protons of ionospheric and magnetosheath origin

interdiffuse along the field line as was assumed in previous chapters.

At reconnection (II) the southern polar region is connected to the

northern region by a field line. Considering the low energy plasma,

it is readily seen that the closed field lines have no source of

-87-



-88-

1

Tr

I

PLASMA FLOW DIRECTION

FIGURE 29. NIGHT SIDE FIELDS



-89-

particles of interplanetary origin -- the interplanetary region of

the open field line and its associated plasma drift away from the

earth after reconnection (III).

A small fraction of the total proton population on the closed

field line has been through the current sheet. This fraction has

probably gained an energy of perhaps Kev and may tend to have small

pitch angles (Dungey, 1966). These particles will be unimportant in

considering motion dependent upon the parallel electric field present,

due to the much larger percentage of low energy protons which have

not been through the current sheet. The behavior of the electrons

will probably be similar. Thus, to a first approximation, the plasma

along the closed field line (III) a short time after reconnection is

of ionospheric origin. The base levels in the north and south polar

ionospheres provide a continual source of plasma, produced by photo-

ionization in the ionosphere, for the outer magnetospheric region of

the closed field line. In fact, as the closed field line (III) ro-

tates out of the plane of Figure 29 towards the day side, the total

electron content along the field line should increase with time due

to this continual supply of particles at the base levels, and due to

the fact that the field line density was partially depleted by a

loss of charged particles to interplanetary space during the open

phase of the circulation cycle (Nishida, 1966).

Before reconnection there is a net plasma flow outwards in

each hemisphere. On the closed field line formed at reconnection,

these outward streams will meet at the equator resulting in some

interaction. In order to determine the exact nature of this streaming
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motion it must be knownwhether or not the proton plasma is cold.

The next section will show that it is valid to ignore the thermal

energy when comparedto the ordered energy of motion of the proton

flow.

The two outward moving plasma streams meet at the equator

immediately after reconnection. It is well known in plasma theory

that a stream of charged particles is prevented from penetrating

another plasma long before collisions could stop such penetration

(Buneman,1964). Hence, it is probable that there will be a rapid

spatial change of the plasma streaming velocity at the equator

initially. However, due to a lack of experimental measurementsof

this plasmamedium, the magnitude of this change is not known.

Hence, the initial velocity profile along the closed field line must

be rather arbitrarily chosen°

Immediately after reconnection, it is assumedthat the outward

proton flow velocity has a nonzero constant value on each half of the

considered closed dipole field lineo (It was pointed out by Dr. Jo Wo

Dungey, in a personal communication, that on an open field line this

assumption of constant velocity would be analogous to the situation

in the solar breeze.) It is assumedthat the interaction region at

the equator has a very small thickness comparedto other characteristic

lengths -- that is, the existence of shocks are postulated. Since

symmetry is assumedabout the equatorial plane, the proton flow

velocity at the equator must vanish and shocks are assumedto develop

on either side of the equator. These collisionless plasma shocks,

once formed, will moveaway from the equator along the field line
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towards the earth, as the field line and its "frozen-in" plasma follow

the convection circulation pattern towards the day side.

The shocks formed at the equator are collisionless shocks

which rely entirely on electrostatic fields for their formation. It

is assumedthat plasma instabilities will limit the magnitude of the

longitudinal viscosity coefficient and hence, yield shocks which can

be assumedto be of infinitesimal thickness.

The proton density, temperature and velocity will be dis-

continuous across the shocks. The electron temperature, on the other

hand, is assumedto remain unchangedacross the shock because since

the longitudinal electron thermal conductivity is of great magnitude

(Jaffrin and Probstein, 1964) and muchlarger than the proton thermal

conductivity, the electrons may be heated in passing through the

shock but then immediately cooled by thermal conduction to the pre-

shock temperature.

The ionospheric base levels of the closed field line are

assumedto be characterized by identical, constant electron temper-

atures. More rigorous model computations will have to take into

account disparate north and south hemisphere electron temperatures,

and temperatures which vary with time as the field line circulates

towards the day side.

Those electrons with trajectories which pass through the base

level can be considered Maxwellian (via Liouville's theorem) since

ionospheric particles are in thermal equilibrium and collisions are

very rare in the magnetosphere. Interplanetary electrons which

becometrapped in the closed magnetic field configuration after
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reconnection will tend to approach thermal equilibrium with the

electrons of ionospheric origin due to collisions near the bases of

the considered field line_ (It is to be noted that a magnetic-magnetic

trap is implied and not a magnetic-electric trap as was treated pre-

viouslyo) Hence, in a first approximation, the trapped electrons and

the loss cone electrons are characterized by a Maxwellian distribution

function with the assumedconstant base level temperature.

The electrons from each hemisphere, due to their high thermal

velocities, will quickly interdiffuse along the entire field line and

can be considered to occupy all of velocity space at each point°

Therefore, the electron density is related to the potential by the

exponential Boltzmann factor° This relation will be a good approxima-

tion, even though it is assumedthat no net current exists, because

the plasma (ioeo, electron and proton) flow velocity is very small

comparedto the electron thermal velocity°

4.2 Basic Fluid Equations

Ignoring the shocks for the moment, the equations describing

the proton motion along a magnetic flux tube in the outer magneto-

sphere will be considered. First, it must be determined whether the

thermal energy can be ignored in comparison to the ordered kinetic

energy of flow.

The characteristic temperature of the protons (and electrons)

at a height of approximately i000 km at high latitudes on the night

side is approximately 2000°K (Watt, 1965)o This corresponds to a

proton thermal velocity of approximately 70 m/sec_ Now, since 0+

ions dominate at this altitude, protons at this base level see an

electric field directed upwards which is required to maintain
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charge neutrality in the presence of the separative action of gravity.

The magnitude of this electric field acceleration of the protons is

8g (Geisler and Bowhill, 1965) where g is the local gravitational

acceleration. The total acceleration is then 7g (ig was subtracted

due to gravity acting downwards) The kinetic scale height (kT)
• Mg at

high latitudes on the night side above i000 km is always greater than

i00 km (Watt, 1965). Taking the conservatively low value of i00 km,

an estimate for the flow velocity upward is obtained by equating the

kinetic energy of flow to the thermal energy derived from the scale

heights at i000 km. This yields a flow velocity upwards at the base

of 4470 m/sec. Since the proton velocity is assumedconstant in

each hemisphere initially, it is seen that the proton thermal energy

can be ignored in comparison to the ordered kinetic energy.

The proton motion along the flux tube is regarded as a cold

proton flow in a well thermalized electron background which is char-

acterized by the temperature T. Since all regions of velocity space

are occupied by these electrons, the electron density at any point

along the field line is directly proportional to the Boltzmann

factor• That is, the electron density is given by

eVE m V
e &)n = no exp ( kT kT

where V E is the electrostatic potential, V the gravitational po-g

tential, m the electronic mass, and n O is the constant of pro-e

portionality.

From the above equation it is easily shown that
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kT
-- grad n = e grad VE - me grad V •n g

Take the scalar product of this equation with the unit vector defining

the direction of the field at any point along the field line consider-

ed:

kT _n _VE _V-- - _ (4-1)
n _S - e _S me _S "

In equation 4-1, S is a length coordinate measured along the field

lineo

by:

The proton force equation along the field direction is given

dv _v _v _VE _V
M ....dt M _* Mv _S - e _--_-+ M ---i_S (4-2)

where M is the proton mass and v is the proton parallel velocity

magnitude. Substituting the electric field as calculated from 4-1

into this equation yields:

_V
M dv _ kT _n ___idt n _S + (M - me) _S

But since M > > me, the Euler's equation pertinent to the proton

motion at hand is given by

_V
_v _v kT _n- + (4-3)_t + v _S Mn _S _S

where n corresponds to the proton number density (via quasineutrality).

Next, it must be determined what form the continuity equation

takes for this fluid motion of protons. This equation corresponds to

the motion of a fluid (the protons) in a channel of varying cross

section (the magnetic flux tube) and is given by
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_P + div (p _) = 0_t

where p is the proton mass density (i.e., p = n M) and where _ is the

total proton velocity including both the component of velocity par-

allel to the magnetic field direction and the convective component

perpendicular to the magnetic field direction. Since motion is to

be considered in the frame of reference of a field line as it is

convected, this velocity is identical to the parallel component in

the model under consideration.

Expanding the divergence term in the continuity equation

yields

_0 + grad p • _ + p div (_) = 0 (4-4)_t

In the frame of reference of a given field line as it and its "frozen-

in" plasma is convected in the magnetosphere the second term in

equation 4-4 becomes v _S because in this frame of reference only a

parallel velocity exists.

Consider next the divergence term. Figure 30 shows an en-

larged diagram of a magnetic flux tube with a constructed segment

which will be used to evaluate the velocity divergence. Streamlined

potential flow is assumed along the flux tube whose outer surfaces are

streamlines. This is consistent with the plasma model developed be-

cause loss of protons to another flux tube is prohibited. The upper

and lower surfaces of the constructed pillbox are curved surfaces

which are normal to the streamlines at all points.
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The basic definition of divergence is given by the following

equation:

§v • _dA

div (_v) = lim AV
AV÷O

where dA and AV are the surface area and volume differentials re-

spectively, and _ is the unit outward surface normal. Since there is

no component of velocity normal to the flux tube walls, the surface

integral is given by

§ _v • _ dA = v(S + dS) A(S + dS) - v(S) A(S)

where S is the arc length along the flux tube°

Expanding v(S + dS) and A(S + dS) about the point S by using

the Taylor series and substituting the resulting surface integral into

the defining formula of the divergence, the divergence of the velocity

can be written as

div v = lim

dS÷O
I _A Sv )

v(S) _ dS + A(S) _ ds + 0(dS 2)

AdS

where 0(dS 2) are the terms of higher order than the first in dS and

the differential volume element dV for the pillbox is written as AdS.

Taking the indicated limit, the divergence of the velocity becomes

in final form:

v _A 3v
div v = + --

A _S _S

Given this expression for the divergence, the continuity equa-

tion 4-4 becomes



-98-

_P + v + Pv _A+ O -- = 0 •
_t A _S $S

(4-5)

From the basic definition of the magnetic flux tube, the cross sec-

tional area is inversely proportional to the magnitude of the magnetic

induction. Therefore

dB dA
-- + -- = 0
B A

or

1 _A 1 _B

A _S B _S

Using this in equation 4-5, the continuity equation takes the form

_S Sv pv _B (4-6)_P + v + p _)--_ = _)--_ •_t B

Using subscript notation to denote partial differentiation,
-_V

--_ Euler'
defining a pressure p = n k T and noting that g = _S ' s equa-

tion (equation 4-3) and the continuity equation 4-6 can be written

in the following compact forms:

Pvt + pVVs + PS = -gP

and (4-7)

= PV B
Pt + VPs + PVs B S "

It should be emphasized that p is not a real thermal proton pressure.

It corresponds to the force of the parallel electric field acting on

the protons. The protons are considered as cold and therefore have

no internal thermal pressure. This latter assumption is true only
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for the preshock protons (i.e., protons on the earth side of the

shock). Passagethrough the shock will thermalize the protons and

hence require a real pressure component. This situation will be in-

vestigated in subsequent sections.

A sound speed c can be defined for the proton flow by the
2 dP

usual relationship c - do " Since the electron temperature T re-
2 kT

mains constant, c - M - constant in the present model. Also in-

corporating the magnetic field terms into one symbol F i _B= _ _-_for

convenience, the equations of flow 4-6 can be written as

2
0vt + 0vvS + c 0S = - 0g

and (4- 7)

0t + v0S + 0vS = 0vF •

These equations are identical in form to the one dimensional isentropic

equations of fluid dynamics with the addition of an external gravita-

tional field and a varying channel width. It now remains to set up a

method of solution and the appropriate boundary conditions for the

set of equations 4-7.

4.3 Solution of the Fluid Equations

The system of equations 4-7 is a system of quasilinear partial

differential equations of the first order for the two dependent vari-

ables v and 0 which are functions of the two independent variables

t and S. Before a method of solution can be found, it must be de-

termined whether this system of equations is elliptic, parabolic or

hyperbolic.
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For a system of two equations with the general form

LI = AIOS + BiOt + ClVS + DlVt + E1 = O
(4-8)

L2 = A20S + B20t + C2vS + D2vt + E2 = 0

the nature of the equations is elliptic, parabolic or hyperbolic de-

b2pending on whether the quantity ac - is greater than, equal to, or

less than zero respectively, where the quantities a, b, and c are

defined by a = [AC], 2b = [AD], and c = [BD] with the abbreviation

[XY] = XIY2 - X2Y2o The derivation of this relation can be found in

"Supersonic Flow and ShockWaves"by R• Courant and Ko Oo Friedrichs

(Interscience Publishers), Chapter II, Section 22.

The factors a, b, and c are easily determined by comparing

• b2equations 4-8 with 4-7 A small manipulation then yields ac - =
2 2

-0 c which is always negative. Therefore, the proton flow equations

4-7 are always hyperbolic -- in both the supersonic and subsonic

domains. Thus, the notion of characteristics may be used to solve

these equations.

A characteristic direction represented by the ratio t :S

where t and s are functions of o alone is defined as such a direction

in which there exists a linear combination of LI and L2 (equations

4-8) for which the derivatives of v and 0 are in the samecharac-

teristic direction. For the special case of equations 4-7, the char-

acteristic equations are directly obtainable° Form a linear combina-

tion of these two equations:
2

c 0S
vt + vvS +- 0 + g + % (0t + v0S + 0vs - 0vF) = 0o
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Rearranging terms, this becomes

2
vt + (v + %0) vs + 10t + (Iv + c )P OS - %pvF= -g • (4-9)

The conditions for which equation 4-9 involves the derivatives

uo, OO of u and O in only one direction given by (t , S ) is then

evidently

2
S_ = (v + %0) t_ and %S_= (%v+ _ ) t_p

Therefore, two values exist for the multiplicative factor %:

and hence, there are two characteristic directions for the flow

equations which are given by

S_ = (v + c) t_ and S_ = (v - c) t B . (4-10)

The corresponding characteristic equations for Oand v are

found from 4-9 to be

c

+-- p_ - cvFt + = 0v P _ gt

and (4-11)

c

vB - _ PB + cvFt8 + gt B = 0

where F -
1 3B

B _S , c, and the gravitational acceleration g are known

quantities.

The four characteristic equations replace the original two

flow equations 4-7. The value of the characteristic equations lies

in their simple form. Each equation contains derivatives with
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respect to only one of the two new independent parameters (_ and _)

and the coefficients do not depend on these parameters.

If the external force of gravity and the magnetic field

term F were zero, the derivatives of t in equations 4-11 would not

be present and the 0-v characteristics could be obtained explicitly

(for a thorough analysis of the force free one dimensional isentropic

flow see Courant and Freidrich's text)° In the present model, the

derivatives of t are present and the method of finite differences

must be used to solve the characteristic equations 4-10 and 4-11o

Assumethat values of O and v are specified along somebound-

ary curve (this curve cannot be a characteristic) in S-t space (see

Figure 31)o Then the directions of the characteristic curves

(equations 4-10) passing through the boundary curve are known at

the boundary° Assuming that the velocity varies slowly near the

boundary, the characteristics can be approximated by the straight

at_= v - c (_ characteristic) and aE_= Vb + c (_ charac-lines a

teristic), where the velocity vd corresponds to the velocity speci-

fied at the point (Sd,t d) on the boundary curve and where the

English alphabetic subscripts denote boundary conditions and not

partial differentiation° Since differentiation is to be denoted

explicitly in the work to follow, this change of notation should

cause no difficulty.

Consider a point (S,t) near the boundary curve° This point

is crossed by an _ characteristic and by a _ characteristic. If the

point is sufficiently close to the boundary, these characteristics

can be taken to be two of the linear segments defined in the previous
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paragraph° Figure 31 shows a construction of an _ and a B character-

istic intersecting at the point (S,t)°

The first of equations 4-11 is valid only along an _ charac-

teristic in S-t space° Therefore, the finite difference form of

this equation is determined by considering the change in variables

between the points (S,t) and (Sa,t a) which are the endpoints of the

linearized _ characteristic.

equation is therefore written

The finite difference form of this

v - Va + cC_pa(p-pa) - (CVa _a - _a ) (t - ta) = 0
(4-12)

where the subscripts denote boundary values and the quantities
a

and ga represent values of F and g determined at the midpoint of the

characteristic (i.e=, at (S + S )/2)° The unsubscripted variables
a

denote conditions at the point (S,t). Similarly, the finite dif-

ference form for the second of equations 4-11 along the B charac-

teristic is

c

v - vb - _b (P-Pb) + (CVbFb + gb) (t - tb) = O o
(4-13)

Equations 4-12 and 4-13 are two simultaneous equations for

the unknowns p and v at the point (S,t)o

for O and v yields:

Solving these equations

V(Pa + Pb ) = Pa [va + c + (CVFa - ga ) (t - ta )] +

and

pb[_b - c - (cvF b + gb ) (t - tb)] (4-14)
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Pa Pb

C(Pa+Pb) [va - vb + 2c + (CVa _a - ga ) (t - ta ) +

(CVbF b + gb ) (t - tb) ] (4-i5)

The finite difference forms of the linearized S-t character-

istics discussed previously are

S - S
a = (va + c) (t - ta) for the _ characteristic

and (4-16)

S - Sb = (vb - c) (t - tb) for the _ characteristic.

Given an appropriate boundary curve on which the quantities P

and v are specified, the values of P and v at all points adjacent to

the boundary are determined as follows. First, a point (S,t) is

specified at which a solution is desired. Equations 4-16 are then

used to determine at which points the characteristics passing through

(S,t) pass through the boundary. This can easily be done if the

boundary curve is the curve S = constant or t = constant as it shall

be in the model under consideration (see the next section). Since

the characteristics' endpoints are now known, the magnetic field and

gravitational quantities F and g appearing in equations 4-12 and 4-13

can be determined. Equations 4-12 and 4-13 then determine uniquely

(assuming no shocks develop) the values of the proton density and

velocity at a point (S,t) near the boundary curve.

A more accurate solution can be obtained by an iterative

technique. Having found v and P in the manner described previously

at the point (S,t), a more accurate solution at the same point is
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obtained by considering the characteristics of equations 4-16 with

the boundary point velocities replaced by the average of the boundary

velocity and the newly determined velocity. A solution is then ob-

tained using these new characteristic directions° This solution can

then be used to modify the slopes and obtain a still more accurate

solution. Whenperforming this iterative technique, care must also

be taken that the density and velocity terms in the characteristic

finite difference equations which did not arise from differentiation

be replaced by the average values calculated. In the actual numerical

computations performed for this plasma model only two iterations were

performed due to the exceedingly long computing time required.

4.4 Physical Parameters and Boundary Conditions

The flow equations 4-7 were developed as part of a model which,

it is believed, characterizes the nature of plasma flow along a

closed magnetospheric field line which reconnected at the night side

of the earth and is convected towards the day side° However, the

derivation of these flow equations in section 4-2 was done without

specifying the exact nature of the magnetic field configuration and

the acceleration term g. These equations are therefore valid for

the general case in which a cold proton stream moves with the

thermal electron background along the direction of the magnetic field

and under the influence of a parallel electric field and an external

force characterized by the acceleration g (it is implicitly assumed

that the plasma is of very low density). The boundary conditions

required for a solution of the equations must therefore be chosen with

a definite magnetic and gravitational field configuration in mind.



-107-

A magnetic flux tube immediately after reconnection on the

night side is of concern here. Initially there is a net flow of

protons of assumedconstant speed 4.47 km/sec (see section 4.1) up-

wards along the field direction from both hemispheres. These streams

meet at the equator (see top of Figure 32) to form shocks which then

movealong the flux tube towards the polar regions. The protons on

the earth side of the shock are cold and therefore described by the

previously developed flow equations. The solution on the earth side

of the shock is not affected by the shock itself. However, the pro-

tons on the equator side have passed through the shock and are no

longer cold particles and therefore do not satisfy the developed

equations. Since the flow on the earth side of the shock is un-

affected by the shock itself, the cold proton solution can be de-

termined along one-half of the flux tube (only half of the flux

tube is needed due to the assumedsymmetryabout the equatorial

plane) as a function of time and after the shock path is determined

the cold proton solution on the earth side can be retained.

The cold proton flow along an open flux tube of the type

shown on the bottom of Figure 32 will actually be considered. A

dipolar flux tube section from one of the polar regions to the

equator becomesa tube of nonvarying cross section (i.e., B remains

constant) on the opposite side of the equatorial plane. The con-

stant area section, it will be seen, has no influence on the flow

along the dipolar part of this flux tube. This open field line

solution, it must be noted, has no bearing on the day side models
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developed previously due to the assumed absence of protons moving

towards the earth in the present model.

After reconnection, the closed field line and its associated

plasma moves around the earth to the day side. Due to this circula-

tion it may seem appropriate that an outward centrifugal force be

included in the flow equations. However, because it is not presently

known at what rate the circulation takes place and because the dif-

ferent parts of the field line may rotate about the earth with dif-

ferent angular velocities, whereas a nonchanging field configuration

is assumed here, it was decided not to include this term in the fluid

equations developed for the cold protons. The effects of this force

will be discussed qualitatively later as a decrease in the downward

gravitational acceleration.

The circulation of plasma in the outer magnetosphere occurs in

the trough region (see Chapter I). Therefore, it is imperative that

the magnetic field line chosen for the proposed model lie beyond

four or five earth radii at the equatorial crossing point° A di-

polar field line which intersects the earth at a latitude of 67° was

chosen -- its geocentric distance at the equatorial crossing point

is 6.55 earth radii. The exact formulas for the variation of the

magnetic induction and its gradient along this dipolar field line

are found in the appendix along with the component of gravitational

acceleration parallel to the field direction.

Using the method of characteristics to solve the quasilinear

partial differential flow equations 4-7 requires stipulation of the

velocity and proton density along a noncharacteristic boundary curve
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in S-t space. A natural choice for the boundary curve is the broken

line formed by the S axis and a line parallel to the t axis which

passes through S = So, where So is the distance along the field line

from the surface of the earth to the chosen base level of the line

of force. Physically, this corresponds to specifying the proton den-

sity and velocity at every point along the field line at time t = 0

(immediately after reconnection) and specifying these quantities at

the base level as a function of time. The base level at So must be

chosen at a high enough altitude so that protons are the dominant

positive ion. This is required because a neutral proton-electron

plasma was assumedin deriving the flow equations. The value So =

1,400 km satisfies this criterion and will be used in the calculations

to follow.

It is now to be shownqualitatively that such boundary con-

ditions will be sufficient to determine the flow parameters along the

entire field line, if chosen properly. Initially (i.eo, at t = 0)

the proton velocity is assumedto be directed away from the earth

with a constant magnitude of 4.47 km/sec along the field lineo It is

to be rememberedthat unless otherwise stipulated, the field line

referred to is the open line of Figure 32. Since the sound speed c
2 kT

is defined by c - M and the characteristic electron temperature is

2000°K, the numerical value of the speed of sound is 4.06 km/seco

Thus, the initial flow is "supersonic" and the characteristics

(equations 4-10) have the general form shownin Figure 33 for the two

characteristics emerging from the base level at t = 0. The
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characteristics plotted are only approximate. The flow equations must

be solved to determine the exact nature of these curves.

The specification of proton density along the field line at

t = 0 should be made from experimental data. However, the data avail-

able is insufficient for this purpose. Therefore, an assumed profile

must be used° Since the closed field line lies in the magnetospheric

trough region, the density at the equator should be very small. A

value of one proton/cc at the equator agrees with the observed whis-

tler data (Carpenter, 1966). In the polar regions, densities as low

as 300/cc have been found at altitudes near i000 km (Taylor et al.,

1967). Taking the density as directly proportional to the magnetic

induction along the considered field line (67 ° base latitude) and

assuming the density at the equatorial crossing point is one proton/cc,

the density at S is of the order of magnitude of 300/cc. Therefore,
O

the variation of the density along the field line initially is assumed

proportional to the magnetic field.

As the closed dipole field line and its associated plasma move

toward the day side of the earth, the base level proton density in-

creases due to increased photoionization at and below the base level°

This increase is assumed to be a linear function of the time in hours.

That is n = n (i + t (in hours))_ A more realistic model may have
O

an exponential increase in density superimposed on this variation to

correspond to _possible very rapid increases at sunrise° The more

gradual increase may restrict the validity of the proposed model to

the night part of the circulation cycle° The velocity at the base
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level is assumedconstant at the previously calculated speed of 4.47

km/sec.

If all of the characteristics in S-t space have the same form

as the two characteristics emanating from the origin in Figure 33, all

of S-t space can be covered by a net of characteristics. If shocks

do not develop, no two _ characteristics will ever intersect one

another and no two B characteristics will intersect one another. In

such a case the flow profile can be calculated uniquely along the field

line as a function of time by meansof the schemeof integration

developed in the previous section with the boundary conditions indi-

cated. The three spatial regions A, B and C in Figure 33 indicate

points which are determined by the boundary conditions at S alone,o

by boundary conditions on both axes near their intersection, and by

boundary conditions on the t = 0 axis alone, respectively.

Should shocks develop from compression waves, similar charac-

teristics will intersect and at the intersection points the method

of characteristics will not yield unique solutions to the flow equa-

tions. Methods for calculating the development of shocks from com-

pression waves can be found in Courant and Friedrichs' text (1948).

As long as the flow remains supersonic, the slopes dt/dS of

both types of characteristics remain positive. Therefore, in the open

flux tube which has a constant cross section beyond the equator, the

developing waves will propagate away from the dipolar segment into

interplanetary space. Conditions on the constant field portion do

not propagate towards the earth. Therefore, the solution on the

dipolar portion of the open field line is identical to the solution



-114-

of the cold proton flow along the closed field line. It now remains

to determine the actual development of the proton flow velocity and

density along the open field line with the boundary conditions

developed in this section.

4°5 Numerical Solution of Flow

The numerical technique described in section 4°3 is applied

to the boundary conditions described in the previous section to

determine the flow development° Numerical computations were perform-

ed on the IBM 360 Computer at the Pennsylvania State University°

In a flow problem of this nature, the most natural pattern

of iteration is to determine the density and velocity profiles along

the entire field line at specified times° That is, from the bound-

ary conditions specified in the previous section, the flow is deter-

mined at all points on the straight line t = At in S-t space° These

new values are then used to determine the solutions on the line

t = 2At, and so forth°

Preliminary computations using this scheme with the finite

difference solution developed in section 4°3 showed that the largest

time interval At which could be used without yielding spurious dis-

continuities, due to a failure of the approximation of the deriva-

tives by finite differences, was 0.2 minutes. This value was used

in the computations. The distance between points on the line

t = constant at which the flow variables were determined was taken

as 0°04 earth radii° This spatial separation corresponds to

division of the considered 67 ° dipole field line into 200 parts

between the base level and the equator°
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The computing time required for the complete determination of

the flow along the dipole part of the open field line at a given time,

from the data determined at a time At earlier and/or the prescribed

boundary conditions was approximately 30 seconds.

The resulting density and proton velocity profiles along the

dipolar part of the considered open field line appear in Figure 34

and Figure 35 respectively for a time period of four hours. Further

computations were not performed due to the formation of a shock

discontinuity at the base shortly after four hours which propagates

toward the equator and requires a treatment different than the flow

solution used.

This shock formation appears in the density profile as a

rapid rise in proton density with altitude just above the base level

followed by a rapid spatial decrease. The velocity, on the other

hand, tends to approach the speed of sound (4.06 km/sec) as its

minimumvalue. As the velocity approached the speed of sound,

similar characteristics began to approach one another until at the

speed of sound they intersected, yielding a multiple valued solution

indicative of a shock. Whenformed, this shock will probably be

driven along the field direction towards the equator.

Since there are shocks hypothesized initially at the equator

on the closed field line, it appears that further computations may

involve the almost impossible numerical problem of determining the

time development of the interactions between four shocks (remember

that shocks form in both hemispheres on the closed field line).

If the equatorially generated shocks, on the closed field line,
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however, should reach the earth before the shocks form at the base

levels, they may disturb the medium enough so that these shocks do not

form° In fact, it appears that this will happen, so that it is not

necessary to develop the motion of this base generated shock further.

Also, it is to be seen that the formation of this shock is due mainly

to the geometry chosen. Therefore, it may not really occur in a more

realistic model°

That the proton velocity should tend to decrease with altitude

to a minimum value and then increase with altitude at heights above

the point of the minimum is reasonable can be seen most readily from

an examination of the steady state flow equations. From equations

4-7, the time independent equations describing the proton flow are:

3v 1 3P

v-_ = 0 3S g

and (4-17)

_S _v _v _Bv + P "_= B _S

where p = nkT as defined previously.

Integration of the second of equations 4-17 yields pv_B. Sub-

stituting this result into the first equation and using the definition

2
of the speed of sound c

few manipulations :

2
dv

(v - _---)
v d-S=

dp
dS yields the following equation after a

2
c 3B

B _S g . (4-18)

For a dipole field line which intersects the earth at a latitude

of 67° (see the appendix for the field equation) and a sound speed of
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4.06 km/sec, the right hand side of equation 4-18 is negative below

approximately 0.3 Re, zero at 0.3 Re and positive at distances along

the field line greater than this. Therefore, considering the left

hand side of the equation, it is seen that at altitudes below this

critical point the velocity v decreases with increasing altitude if

it is supersonic (as is assumedin the model presented). Above the

critical point the velocity must remain supersonic if the speed is

supersonic at the critical point. Therefore, the velocity above the

critical distance from the earth increases with increasing altitude

according to equation 4-18. The time dependent analysis shows this

tendency near the base level. These results are indicative of flow

in a channel with a throat (see Liepmannand Roshko; 1957). The

expanding flux tube in the present case is effectively constricted

near the base level by the gravitational force. Time independent

computations of this nature have been applied also to describe the

hydromagnetic expansion of the solar corona (Parker, 1963).

Having explained the results near the base of the field line,

it remains to describe the physics of the situation above the

critical point. The proton density increases with time as expected

due to the continual movementof plasma upwards along the field line

from the base regions.

The protons (Figure 35) are accelerated along the field line

away from the earth. This acceleration is due to the upwardly

directed parallel electric field present (the upward force exerted

on a proton due to the parallel electric field present is propor-
1 _n

tional to see equation 4-1) It is expected from then _S
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previous analysis of the time stationary equations that the accelera-

tion should be directed away from the earth because a supersonic flow

in the region above the critical point implies an increase of velocity

with altitude.

After a time period of approximately three hours, the increase

of velocity at stationary points far above the base level no longer

occurs. This transition is due to the fact that the electric field

will drive the protons in such a manner as to reduce the field magni-

tude. Also the deceleration of particles at the critical point

yields a source of particles of lower initial velocities for the

distant regions.

The velocity profiles of the protons (Figure 35) steepen with

time as they propagate away from the equator (the equator is located

at a distance of 8.03 Re along the field line from the earth) along

the constant field portion of the open field line into interplanetary

space. This corresponds to a compression wave which will eventually

form a shock traveling away from the earth into a mediumcharacter-

ized by a constant density and velocity. (Initially, it was assumed

that v = 4.47 km/sec everywhere on the open field line and that

n = 1 proton/cc at the equator and beyond.)

Nowthat the flow has been determined on the open field line,

the shocks hypothesized at the equator on a closed field line after

reconnection (see Figure 32) can be considered since the above re-

sults remain valid in the regions corresponding to the earth sides

of the shocks in both hemispheres.
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4.6 Shock Relations

The hypothesized discontinuity of velocity at the equator,

corresponding to a collision of proton streams traveling with con-

stant velocities along the considered field line away from the earth

is to be considered now. Due to the symmetry of the problem, it is

expected that two shocks will form at the equator -- each to travel

along the field line, away from the equator, towards the polar regions,

as the field line circulates towards the day side of the earth. Due

to the symmetry about the equator, only one shock is to be treated.

The motion of the other shock is determined by a simple reflection

through the equatorial plane.

Since a symmetrical model is to be developed, it is imperative

that the velocity of the proton flow at the equator vanish. This

condition is required for a solution as will be seen in the work to

follow.

The shock discontinuity propagates towards the earth along the

dipole field line. The shock motion and the corresponding terminology

commonly used to describe it are drawn in Figure 36. As the shock

propagates down the tube, it meets a plasma characterized by the sub-

script o, which passes through the shock and emerges on the down-

stream side of the shock with new flow variables which will be indi-

cated by a i subscript. In passing through the shock, the entropy

of the plasma flow increases. This entropy increase is a conversion

of ordered energy into thermal energy in the present model since it

had been assumed previously that the protons flowing upwards from
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the earth were cold. A thorough analysis of the effect of a shock

on the entropy can be found in the text of Courant and Friedrichs.

Since time varying boundary conditions were imposed at the

base of the circulating field line, it follows that the shock veloc-

ity as well as the medium behind the shock is dependent on time. It

shall be assumed, however, that the shock is thin enough so that the

change in flow variables can be considered instantaneous and the

shock motion regarded as quasistatic.

Given the shock velocity V (positive away from the earth) and

the pressure Po' proton flow velocity Vo, and the density Po adjacent

to the shock on the earth side (given the shock location and time,

these flow parameters can be determined from the flow profiles de-

veloped in the previous section), it is desired to have a set of

relations which can be used to determine the plasma variables adja-

cent to the shock on the backside (i.e., the equator side). These

relations are determined by the conservation equations across the

shock.

In the frame of reference in which the shock is stationary

the velocity of the plasma flow is u = v-V where v is a plasma

velocity at the shock in a frame of reference fixed in the plane of

the circulating dipole field line. Subscripts on u and v will in-

dicate whether pre- or postshock velocities are meant. The conser-

vation laws are to be determined in this frame of reference of the

shock.

First consider the mass flow through the shock. Since no ions

are created inside the shock, the proton number flux and the proton
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mass flux remain unchanged across the shock°

vation law is written

Therefore the conser-

OlU I = 0oU ° o (4-19)

The proton momentum is changed in passing through the shock

due to a difterence in the forces acting on the protons upstream and

downstream of the shock. Upstream of the shock, there is an effective

pressure acting on the protons of Po = nokT, which is the electrical

force° On the downstream side there is also a thermal pressure com-

ponent pt o Therefore, the change in momentum flux across the shock

is equated to the pressure difference across the shock° That is,

01VlU 1 - 0oVoU ° = po-Pl (4-20)

where Po = nokT and Pl = nlkT + Pt and T is the constant electron

temperature.

Since the electron temperature is assumed constant across the

shock there will be no change in the internal energy of the electrons

(see section 4-i)_ Also, due to charge neutrality, no electrical

potential energy is carried across the shock. On the other hand, the

cold protons become thermalized in passing through the shock. The

proton energy change is due to the net power applied at the shock°

The equation of conservation of energy across the shock can be written

as

i 2 i 2)
01 (_ Vl + el) Ul- Po (_ v u =o o PoVo - PlVl
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where eI is the internal energy per unit proton mass on the backside

of the shock. Assuming isentropy behind the shock with an adiabatic

index of 5/3, eI can be written as 3/2 pt/Pl (Courant and Friedrichs,

1948). The energy equation can then be written

i 2 3 Pl

Pl (7Vl +7 iv 2) Uo=) Ul- PO (_ o PoVo-

•Po + Pt ) Vl
O

(4-21)

The jump equations 4-19 to 4-21 are three equations for the

three unknown Vl' PI' and PI" Usually, in shock problems the shock

velocity is known and these three parameters are the only unknowns.

However, in the present nonsteady shock problem, the shock velocity is

not known. Therefore, the three conservation equations are not suf-

ficient to specify the shock motion. Another equation is needed.

For adiabatic flow behind the shock, as assumed, the pressure is re-

lated to the density by

5/3
Pt = APl (4-22)

where A, in general, must satisfy

_A
+ v • grad A = 0_t

along the dipole field line from the earth. It now remains to solve

the shock relations for the shock motion and for conditions immedi-

ately behind the shock.
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4°7 Shock Solutions

At time t = 0, when the shock is at the equator, the velocity

vI of the plasma flow behind the shock vanishes -- this is expected

due to the symmetry involved° Therefore, equations 4-19 through 4-22

are sufficient to determine PI' 01' V and A initially.

Substituting v I = 0 into equation 4-19 yields a relation

between the density downstream and the shock velocity (the upstream

quantities are known from the cold proton analysis of the previous

section) at the equator:

v - V
o

Pl - -V p° • (4-23)

From the momentum jump condition (4-20) the backside thermal

pressure P t is determined in terms of the shock velocity and the

parameters on the earth side of the shock to be:

v
o

Pt = Po _-- + 0o (Vo - V) v (4-24)o

where equation 4-23 was used to eliminate the density 01.

The energy conservation jump condition (equation 4-21) at the

equator initially is then solved for the shock velocity in terms of

the known plasma parameters on the frontside using 4-23, 4-24 and the

condition vI = O. The equation for V turns out to be a quadratic

equation with the solution

- B _ YB 2 - 4DC

V = 2D (4-25)

3

3 2 5 PoVo

where D = _ PoVo , B = - PoVo , and C = - _PoVo 2 _ There are

two solutions for the shock velocity, but this causes no difficulty
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because one of the solutions (the solution with the positive sign)

will be seen to yield a negative thermal pressure Pt behind the

shock and hence, can be ignored.

The initial conditions at the equator immediately after re-

connection were set up in previous sections. Due to symmetry vI = 0

-- this relation was used to determine the above shock equations at

the equator at time t = 0. The remaining initial conditions at the

equator are that the proton density is i/cc and the upwardvelocity

on the earth side is 4.47 km/sec. Substituting these values in 4-23,

4-24 and 4-25 yields the parameters of the shock motion initially

at the equator. The two shocks formed initially which moveaway

from one another toward opposite hemispheres are thus found to have

oppositely directed velocities of magnitude -4.54 km/sec (the minus

sign denotes motion away from the equator towards the earth). The

shocks initially are found to have a backside density which is 1.98/

cc. That is, the density is increased by a factor of approximately

two in passing through the shock in the direction of flow.

In the case of general isentropic flow behind the shock, the

motion of the shock must be determined by solving equations 4-19

through 4-22 when the position of the shock and frontside conditions

are known. Unfortunately, an explicit mathematical solution cannot

be obtained in the general case except at the equator where the ve-

locity vI vanishes. If vI is allowed to vary behind the shock as

the shock moves towards the earth, the shock jump conditions must be

solved in conjunction with the flow equations behind the shock.

However, the proton flow equations behind the shock will not be
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identical to the cold proton flow equations used to determine the

flow on the earth side of the shock° The sound speed c, for example,

defined as , will no longer be constant due to the addition

of a thermal component to the pressure which is not a linear function

of density° Another complication in the solution results because a

third characteristic which corresponds to the particle path in S-t space

must be used in addition to the alpha and beta characteristics de-

fined previously° This characteristic is needed whenever general

adiabatic flow is considered (see Courant and Friedrich's text)°

These difficulties, in conjunction with the immensecomputing time

required for a numerical solution, precluded any attempt at a

solution in this general case°

Part of the ordered motion of the proton flow on the front

side of the shock is converted into thermal energy on the backside.

It shall be assumedthat all of the ordered energy is converted into

thermal energy so than the plasma on the backside of the shock in

the earth's frame of reference has no ordered velocity. Thus, v1

shall be assumedto vanish at all points behind the shock.

For vanishing Vl, equations 4-23 to 4-25 yield the shock

velocity and backside parameters as the shock movesalong the

field line towards the earth. The numerical procedure to be iollow-

ed is one ol finite di_ferenceso The shock velocity V at the equator

has been determined° Therefore, in a small time interval At, the

shock will travel a distance VAt from the equator (a negative dis-

tance corresponding to a negative shock velocity just meansthat the

shock is moving away from the equator). This time interval is chosen
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small enough so that the velocity of the shock does not change signif-

icantly in this interval. In the actual computations a time interval

of one minute was used. In this interval of time, a particle of

velocity 4.54 km/sec travels a distance of approximately 0.04 earth

radii. After the new location of the shock is obtained, the preshock

flow parameters at that point are determined from the cold proton

flow results of section 4.5. Then the jump conditions for v I = 0

are solved with these values to determine the shock velocity V at

this point. This iterative procedure is continued until the shock

reaches the earth.

The resulting path of the shock in S-t space for complete

thermalisation behind the shock is plotted in Figure 37 as a dashed

line. The vertical scale for this curve is labeled on the right.

Superimposed on this plot is the shock velocity (solid curve) as a

function of the location of the shock on the field line. The slope

of the shock path curve at any point is the shock velocity at that

point and time. However, the scales required for the time and dis-

tance axes obscure the velocity changes -- hence, the inclusion of

the explicit velocity curve. It is seen that the shock is initially

accelerated in its motion towards the earth until it reaches approx-

imately four earth radii from the base of the field line. At lower

attitudes, the velocity is decelerated -- this deceleration is due

to the fact that the proton flow velocity on the earth side of the

shock in this region is itself decelerated (see Figure 35).

It can also be seen from Figure 37 that the shock reaches the

surface of the earth in approximately three hours. Since it was



-130-

0

\

\
%
\
%

SHOCK

\
\

\
\

\
\

SHOCK\
PATH \

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\

I I I I I I I

2 4 6

DISTANCE FROM EARTH (R e )

FIGURE 37. SHOCK PATH AND VELOCITY



D
-131-

previously determined that a shock appears to be forming at the base

level at a time greater than three hours after reconnection, it is

seen that the equatorial generated shock will pass through the com-

pression wave at the base before this shock can form. This passage

may preclude the formation of the base level shock due to disturbance

of the medium by the downcoming discontinuity. Whether or not the

base level shock will form depends on a more critical evaluation of

the boundary conditions at the base level.

The passage of the equatorial shock itself through the base

level also creates a problem of consistency. The flow profile

generated on the backside of the shock is a time stationary profile.

Since the flow velocity is assumed to vanish at every point in this

region, there is no net motion of protons along the field line and

hence the density must remain time independent at any point behind

the shock. (However, there can be, and are, spatial variations of

density in this region.) When this shock passes through the base

level, it leaves a constant valued flow at the base. But a time

varying density was assumed at the base level as one of the bound-

ary conditions previously. Therefore there is an inconsistency

at the base level. This inconsistency is due to the many assumptions

made in the model without detailed physical structure. For example,

the density variation at the base level is determined by the rate

at which the sun's energy photoionizes the neutral particles at and

below the base level. This production will occur after the shock

passes,creating an actual time dependent variation. Thus, the
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assumednature of the shock must be modified in somemanner by in-

cluding this production term in a more rigorous model.

A more serious drawback to the boundary value problem at hand

is that the density and velocity were specified at the base level as

a function of time. This specification implicitly assumedthe non-

existence of a temporal discontinuity in the density and velocity at

the base level. Therefore, these boundary conditions must be modi-

fied by considering the temporal discontinuity in the parameters at

the base level due to the passage of the shock. A true boundary

value specification will take into account the changes caused by the

shock.

The stationary density configuration behind the shock at any

time in its motion is a simple decrease from the value immediately

on the backside of the shock to the minimumvalue of 1.98/cc at the

equator. Due to the lack of any interesting structure in this varia-

tion, the density variation is not plotted.

4.8 Comments on Flow Problem

The flow of protons (and electrons) along closed field lines

which circulate in the outer magnetosphere has been approximated by

a mathematical model. The assumptions made in this model were many.

Due to the lack of experimental data on the characteristics of the

low energy plasma in the outer magnetosphere, many of the numerical

parameters were specified rather arbitrarily. As more data be-

comes available, these parameters can be adjusted accordingly.

One of the critical assumptions made is that shocks of in-

finitesimal thickness form at the equator immediately after
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reconnection. If viscosity plays an important part and is not limit-

ed severely by plasma instabilities, there will be no infinitesimal

shock but rather a finite region over which the flow variables change

continuously. Whether shocks actually exist or not in the low energy

plasma distribution along closed field lines in the outer magnetosphere

must be determined by satellite measurements. Should such discon-

tinuities not be found, it would indicate the possible existence of

a large longitudinal viscosity coefficient in the outer magnetosphere.

In such a cased the momentumand energy equations would have to be

solved with the viscosity terms included.

The most important need in this area of physics, at the present

time, is more satellite explorations of the low energy magnetospheric

plasma. Extensive satellite measurementsare required in order to

accurately specify the boundary conditions and the initial conditions

of the proton flow, and in order to determine whether the manyphysi-

cal assumptions madein this dissertation are valid or not°



CHAPTERV

SUMMARYANDCONCLUSIONS

This work is a theoretical study of the motion of low energy

plasma in the outer magnetosphereassuming Dungey's open model of the

geomagnetic field configuration. The object of the study is to ex-

plore the distribution of low energy plasma expected in the open

model. Such studies are required in order to determine what type of

physical variations maybe expected when actual satellite measurements

are madeof this medium. Also, there is a need, at the present time,

to clearly define the problems which must be solved in order to ob-

tain a clear understanding of the plasma processes which take place

in this region. In order to make these studies, certain simplified

plasma models are devised.

It was assumedthat the electric field componentparallel to

the magnetic field direction is a conservative field. Therefore,

the low energy plasma could be considered as frozen to the magnetic

field lines in the outer magnetosphere, and the spatial distribution

of plasma is determined by considering the evolution of the plasma

motion along a line of force, which is followed through the circula-

tion described in the introduction° That is, the motion of the plasma

is considered in the one dimensional coordinate system along a field

line and to this motion is to be superposed the independent motion

in the direction perpendicular to the field direction. In this

thesis the parallel motion is explored numerically; whereas, the

perpendicular motion is only considered qualitatively. (Direct
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experimental measurementsof the electric fields and detailed mappings

of the magnetic field configuration at high latitudes and high alti-

tudes would be required in order to determine the validity of the

frozen-in hypothesis and in order to determine accurately the mor-

phology of the field line circulation.)

There are two distinct phases in the circulation cycle of such

a magnetic field line: the open state and the closed state. Each

phase requires a different physical model to describe the motion of

plasma along the field line. The plasma along an open field line

formed by interconnection on the day side of the earth is considered

in Chapter II and Chapter III; whereas, a model of the plasma motion

along a closed field line formed by reconnection on the night side

is considered in Chapter IV.

At day side interconnection, the field line becomesopen and

forms a direct path by which magnetospheric charged particles can

escape into the magnetosheath, and a path by which the hotter

magnetosheath particles can enter the magnetosphereand eventually

the polar ionosphere. Electrons of magnetosheath and magnetospheric

origin, due to their high thermal velocities, rapidly interdiffuse

along the entire length of the open field line. Hence, there should

be a sharp latitudinal gradient of electron temperature at high

altitudes across those geomagnetic field lines which pass through

the day side neutral point (see Figure 4) due to the absence of the

hot magnetosheath electrons on the closed field lines and due to the

rapid traversal of the length of the open field line by these

electrons. At low altitudes, this gradient will be much reduced
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due to the large number of cooler electrons, of ionospheric origin,

which are present°

In the outer magnetosphere the density of the low energy

charged particles is very low and collisions can be ignored. In such

a plasma electric field componentsparallel to the magnetic field

lines mayexist and must be considered in determining the motion of

the plasma° The electrons due to their high thermal velocities can

be considered in quasistatic equilibrium with the electrostatic po-

tential at any point along the open field lineo The proton motion,

however, due to the protons' low velocities, must be determined by

considering the past history of the parallel electric field.

A simplified model which may describe the proton motion along

the open field line formed at interconnection is developed by

approximating the velocity distribution function of the magneto-

spheric and magnetosheath protons by block functions. The parallel

electric field which accelerates the protons is determined by using

the principle of quasineutrality and the electron density-potential

profiles derived from a consideration of the loss cones occupied by

the electrons along the field lines. If the magnetosheath density

is less than the magnetospheric density near the point of re-

connection (i.e., near the neutral point) a parallel E field direct-

ed away from the earth developes in the interdiffusion region. This

implies that there will be electrons on the open field line which

are trapped between an electrical potential barrier near the magneto-

pause and the magnetic mirror near the earth. The existence of these

trapped electrons were inferred from, but not included in the
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computations of Chapter II. However, they were included in the compu-

tations of Chapter III, in which the electron density - potential

profiles were derived at points along the open field line, under the

reasonable assumption that the trapped electrons were of ionospheric

origin. If the electron density distribution (or the proton density

via quasineutrality) along an open field line in the magnetosphere

were measured experimentally, these computedresults could be used

to obtain the variation of the parallel electric field along the

field line.

The physics of the low energy plasma changeswhen the magnetic

field line closes by reconnection on the night side. Considering the

closed field line which is formed at reconnection, the particles of

interplanetary origin are quickly lost in the ionosphere so that only

charged particles of ionospheric origin are assumedto be on the

closed field line. There is before reconnection a net outflow of

protons from each hemisphere along the field direction. Therefore,

on the closed field line formed by reconnection, these two streams

of p_otons meet at the equator initially and the formation of a

shock is postulated at the equator. To be precise, due to the

assumedsymmetry of the plasma motion about the equatorial plane,

two shocks form -- one of which travels along the closed dipole field

away from the equator towards the north pole region, and the other

towards the south pole region.

Numerical solutions of the derived proton flow equations along

the closed field line show that the protons are accelerated along the

field line away from the earth by the parallel electric field present.
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They are also accelerated upwards due to that fact that their velocity

is initially supersonic (with respect to a sound speed characteristic

of the problem) and the flow is in a diverging channel (ioe., a di-

verging magnetic flux tube)°

The motion of the shocks is explored for the simple situation

in which the ordered proton velocity is completely randomized by the

passage of the shocks. It is found that the shocks will reach an

altitude of i000 km above the earth in the polar regions in a time

period of approximately three hours after being formed at reconnection

on the night side° The effects of the passage of such a shock would

be a rapid spatial changeof density and temperature of the low energy

plasma°

Near the base levels of the closed field line formed by re-

connection on the night side, compression waves develop which steepen

into shocks approximately four hours after reconnectiono These com-

pression waves (and shocks) arise due to the supersonic flow of pro-

tons in a channel with an effective constriction near the base. The

constriction (or throat as it is commonlycalled) forms due to the

effect of gravity and is identical in nature to that which occurs

near the sun and is responsible for the supersonic coronal expansion

(Parker, 1963)o

The computations of the motion of the equatorial formed

shocks indicate that these shocks will reach the earth three hours

after reconnection, assuming the proton flow is completely random-

ized by their passage. Hence, the compression waves formed at the

base are destroyed by the downcomingshocks and shocks may never
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form at the channel constrictions. However, if the assumedvalues

of the physical parameters used in the flow model should be found in

need of revision from experimental measurements, and if the motion

of shocks generated at the equator which do not completely thermalize

the proton motion is considered, a series of two or more traveling

disturbances in the form of interacting shocks may exist along the

closed field line at all times during the closed phase of the con-

vection cycle.

The model studies performed in this thesis are only initial

approaches to a complete understanding of the physics of the low

energy magnetospheric plasma. These studies have defined manyof

the problems which must still be considered in this plasma medium.

It is suggested that further studies be undertaken as follows:

i. Extensive experimental measurementsof the low energy

plasma density and energy distribution in the magnetosphereand in

the polar regions are needed in order to determine the exact forms

of the initial and boundary conditions applicable to the model

studies, and in order to evaluate the assumptions used in these

studies. The model studies indicate that the experimental data

should be ordered along magnetic field lines. In fact, given the

density profile along a field line, the results of this thesis can

be used to determine the variation of the parallel electric field

along this same field line.

2. Direct experimental measurementsof the electric fields

in the magnetospheremust be undertaken in order to determine to

what degree the assumption of a conservative parallel electric field
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is valid, and in order to determine the exact form of the convection

pattern described in Chapter I.

3o The approximate model of proton motion along an open

field line, which was developed in Chapter II, should be applied to

the model of the electron distribution developed in Chapter III using

a more realistic magnetic field configuration than was used in the

second chapter°

4 The paths of the shocks formed at reconnection on the

night side should be computed, using the flow model developed in

Chapter IV, in the general case of isentropic flow behind the shocks°

5. The effect of a nonvanishing longitudinal viscosity co-

efficient on the plasma flow along a closed field line should be

explored. That is, to the proton flow equations developed in Chapter

IV should be added the viscosity term. It is to be noted that the

use of viscosity will also require the use of the differential energy

conservation equation since viscous stresses will yield a finite

region of continuous change in place of the shock.

6. An extensive theoretical investigation of the structure

of plasma shocks generated by electrostatic fields should be under-

taken in order to determine the processes required for their forma-

tion°
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APPENDIX

MAGNETICANDGRAVITATIONALTERMS

The coordinate systems used to define a magnetic dipole field

line are shownin Figure 38. The distance along the line of force

from the earth to the point in question is labeled s and corresponds

to the distance coordinate used in the text.

Angerami and Thomas(Appendix; 1963) derived a relationship

between the distance along the field line SI from its equatorial

crossing point and the latitude _ of the given point. This is

expressed as

SI(_)- RE Ii 12_-- n (Y + i_ ) + Y i_ (A-I)

where Y = _ sin _, _ is the latitude and RE is the geocentric

distance to the equatorial crossing point of the considered field

line. The coordinate s is related to SI by

s(_) = Sl(_o) - Sl(_)

where _o is the latitude at which the field line intersects the

earth.

The differential ds is related to the latitude by

ds = - RE -_/i+3 sin 2 _ cos _ d _ •

(A-2)

Another relation which is needed is the magnetic induction

along a dipole field line specified by the equatorial crossing

distance RE:

(A-3)

4
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SI

RE

r = RE(COS = _) S

ro

FIGURE 38. MAGNETIC DIPOLE FIELD LINE
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(M)RE 3 6 (1+3 sin 2 _)½ (A-4)
COS

where the magnetic moment M for the earth is approximately 0.31

gauss- (earth radii) 3.

The flow equations developed in the text involve the factor

F - 1 _B . Since dB _ dB d__
B _s ds d_ ds '

equations A-4 and A-3 are used to

determine the expression for F at any point along the field line:

"l

F = - 3 sin_ I, 1 + 2 |
2 (A-5)

RE (1+3 sin 2 _)½ L1+3 sin 2 _ cos J

Since the natural parameter in the plasma fluid model under

consideration is s, a numerical analysis technique must be used to

obtain the latitude corresponding to s from the equation A-2 before

B or F (equations A-4 and A-5) can be stipulated. Newtons iteration

scheme (Booth; 1955) was used to accomplish this inversion in the

actual computations.

Next, the gravitational acceleration g along the magnetic

dipole field line is required. Again, Angerami and Thomas (1963)

derived this expression° If go is defined as the gravitational

acceleration at the earth's surface (i.eo, go = 9"8m/sec2)' and _o

is the latitude at which the field line intersects the earth, the

component of the gravitational acceleration along the field line is

given by

g = go

where

4

COS _O

4 cos
COS

sin

(A-6)

cos _ --_i+4 tan 2


